Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 6 doi: 10.1016/j.eng.2019.07.028

Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell

Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China

Received: 2019-01-21 Revised: 2019-05-16 Accepted: 2019-07-12 Available online: 2020-05-22

Next Previous

Abstract

In the context of the current serious problems related to energy demand and climate change, substantial progress has been made in developing a sustainable energy system. Electrochemical hydrogen–water conversion is an ideal energy system that can produce fuels via sustainable, fossil-free pathways. However, the energy conversion efficiency of two functioning technologies in this energy system—namely, water electrolysis and the fuel cell—still has great scope for improvement. This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen–water energy system and discusses the key barriers in the hydrogen- and oxygen-involving reactions that occur on the catalyst surface. By means of the scaling relations between reactive intermediates and their apparent catalytic performance, this article summarizes the frameworks of the catalytic activity trends, providing insights into the design of highly active electrocatalysts for the involved reactions. A series of structural engineering methodologies (including nanoarchitecture, facet engineering, polymorph engineering, amorphization, defect engineering, element doping, interface engineering, and alloying) and their applications based on catalytic performance are then introduced, with an emphasis on the rational guidance from previous theoretical and experimental studies. The key scientific problems in the electrochemical hydrogen–water conversion system are outlined, and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

References

[ 1 ] Chen P, Zhu M. Recent progress in hydrogen storage. Mater Today 2008;11 (12):36–43. link1

[ 2 ] Peng L, Wei Z. Design and product engineering of high-performance electrode catalytic materials for water electrolysis. Prog Chem 2018;30(1):14–28. link1

[ 3 ] Liu Y. Progress of green energy hydrogen energy and technology of hydrogen production by water electrolysis. Chin J Powder Sources 2012;36 (10):1579–81. Chinese. link1

[ 4 ] Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 2007;32(16):3797–810. link1

[ 5 ] Kothari R, Buddhi D, Sawhney RL. Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sustain Energy Rev 2008;12(2):553–63. link1

[ 6 ] National Research Council. The hydrogen economy: opportunities, costs, barriers, and R&D needs. Washington, DC: The National Academies Press; 2004. link1

[ 7 ] Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrogen Energy 2003;28(3):267–84. link1

[ 8 ] Tromp TK, Shia RL, Allen M, Eiler JM, Yung YL. Potential environmental impact of a hydrogen economy on the stratosphere. Science 2003;300(5626):1740–2. link1

[ 9 ] Crabtree GW, Dresselhaus M, Buchanan M. The hydrogen economy. Phys Today 2004;57(12):39–44. link1

[10] Yan ZY, Kong XW. Research on non-grid-connected wind power waterelectrolytic hydrogen production system and its applications. Eng Sci 2015 (3):30–4. Chinese. link1

[11] Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today 2009;139(4):244–60. link1

[12] Zhang WQ, Yu B, Chen J, Xu JM. Hydrogen production through solid oxide electrolysis at elevated temperatures. Prog Chem 2008;20(5):778–87. link1

[13] Yu H, Yi B. Hydrogen for energy storage and hydrogen production from electrolysis. Strategic Study Chin Acad Eng 2018;20(3):58–65. link1

[14] Penner SS. Steps toward the hydrogen economy. Energy 2006;31(1):33–43. link1

[15] Marbán G, Valdés-Solís T. Towards the hydrogen economy? Int J Hydrogen Energy 2007;32(12):1625–37. link1

[16] Dresselhaus MS. Basic research needs for the hydrogen economy. In: Proceedings of American Physical Society March Meeting 2004; 2004 Mar 22–26; Montreal, QB, Canada; 2004.

[17] Armor JN. Catalysis and the hydrogen economy. Catal Lett 2005;101(3– 4):131–5. link1

[18] Vlachos DG, Caratzoulas S. The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chem Eng Sci 2010;65 (1):18–29. link1

[19] Farrauto RJ. New catalysts and reactor designs for the hydrogen economy. Chem Eng J 2014;238:172–7. link1

[20] Wang J, Wang H, Fan Y. Techno-economic challenges of fuel cell commercialization. Engineering 2018;4(3):352–60. link1

[21] Wu G. Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Front Energy 2017;11(3):286–98. link1

[22] Wang YQ, Zhang JT. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Front Chem Sci Eng 2018;12(4):838–54. link1

[23] Peng LS, Wei ZD. Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology 2020;48:19–33. link1

[24] Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 2010;36(3):307–26. link1

[25] Wolfschmidt H, Paschos O, Stimming U. Fuel cell science: theory, fundamentals, and biocatalysis. Hoboken: John Wiley & Sons, Inc; 2010. link1

[26] Trasatti S. Electrodes of conductive metallic oxides. Amsterdam: Elsevier Scientific Software; 1980. link1

[27] Nie Y, Li L, Wei Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 2015;44(8):2168–201. link1

[28] Peng LS, Syed SSA, Wei ZD. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin J Catal 2018;39 (10):1575–93. link1

[29] Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017;355(6321):eaad4998. link1

[30] Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 2015;44 (8):2060–86. link1

[31] Rozain C, Millet P. Electrochemical characterization of polymer electrolyte membrane water electrolysis cells. Electrochim Acta 2014;131:160–7. link1

[32] Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 1984;176(1–2):275–95. link1

[33] Belmont C, Girault HH. Coplanar interdigitated band electrodes for synthesis part Ⅰ: ohmic loss evaluation. J Appl Electrochem 1994;24(6):475–80. link1

[34] Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. New York: John Wiley & Sons, Inc; 1980. link1

[35] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. New York: John Wiley & Sons, Inc; 2007. link1

[36] Oldham KB, Myland JC. Fundamentals of electrochemical science. San Diego: Academic Press; 1994. link1

[37] Wen CY, Lin YS, Lu CH. Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack. J Power Sources 2009;192(2):475–85. link1

[38] Huang J, Li Z, Zhang JB. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front Energy 2017;11(3):334–64. link1

[39] Godula-Jopek A, editor. Hydrogen production: electrolysis. Weinheim: WileyVCH; 2015. link1

[40] O’hayre R, Cha SW, Colella WG, Prinz FB. Fuel cell fundamentals. Hoboken: John Wiley & Sons, Inc; 2016. link1

[41] Hine F, Murakami K. Bubble effects on the solution IR drop in a vertical electrolyzer under free and forced-convection. J Electrochem Soc 1980;127 (2):292–7. link1

[42] Crow DR. Principles and applications of electrochemistry. 3rd ed. London: Chapman and Hall; 1988. link1

[43] Pickett DJ. Electrochemical reactor design. Amsterdam: Elsevier Scientific Publishing Company; 1979. link1

[44] Dyer CK. Improved nickel anodes for industrial water electrolyzers. J Electrochem Soc 1985;132(1):64–7. link1

[45] Kinoshita K. Electrochemical oxygen technology.New. York: John Wiley & Sons, Inc; 1992. link1

[46] Mueller U, Schubert M, Yaghi O, Ertl G, Knözinger H, Schüth F, et al. Handbook of heterogeneous catalysis 2008;vol. 1:247–62. link1

[47] Newman J, Thomas-Alyea KE. Electrochemical systems. 3rd ed. Hoboken: John Wiley & Sons, Inc; 2012. link1

[48] Horiuti J, Polanyi M. Grundlinien einer theorie der protonübertragung. Acta Physicochim URSS 1935;2(4):505–32. link1

[49] Sheng WC, Gasteiger HA, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 2010;157(11):B1529–36. link1

[50] Bockris JOM, Potter EC. The mechanism of the cathodic hydrogen evolution reaction. J Electrochem Soc 1952;99(4):169–86. link1

[51] Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 1958;54:1053–63. link1

[52] Xiang R, Peng LS, Wei ZD. Tuning interfacial structures for better catalysis of water electrolysis. Chem Eur J 2019;25(42):9799–815. link1

[53] Peng LS, Liao MS, Zheng XQ, Nie Y, Zhang L, Wang MJ, et al. Accelerated alkaline hydrogen evolution on M(OH)x/M-MoPOx (M = Ni Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps. Chem Sci 2020;11(9):2487–93. link1

[54] Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, et al. Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 2014;5(1):3783. link1

[55] Liu P, Rodriguez JA. Catalysts for hydrogen evolution from the [NiFe]. Hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc 2005;127(42):14871–8. link1

[56] Esposito DV, Hunt ST, Kimmel YC, Chen JG. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J Am Chem Soc 2012;134 (6):3025–33. link1

[57] Shao M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources 2011;196(5):2433–44. link1

[58] Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc 2005;152(3):J23–6. link1

[59] Greeley J, Nørskov JK, Kibler LA, El-Aziz AM, Kolb DM. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem 2006;7 (5):1032–5. link1

[60] Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem 1972;39(1):163–84. link1

[61] Durst J, Simon C, Siebel A, Rheinlander JP, Schuler T, Hanzlik M, et al. Hydrogen oxidation and evolution reaction (HOR/HER) on Pt electrodes in acid vs. alkaline electrolytes: mechanism, activity and particle size effects. ECS Trans 2014;64(3):1069–80. link1

[62] Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 2013;12(12):1137–43. link1

[63] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108(46):17886–92. link1

[64] Greeley J, Nørskov JK. Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction. J Phys Chem C 2009;113(12):4932–9. link1

[65] Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK. Unifying the 2e and 4e reduction of oxygen on metal surfaces. J Phys Chem Lett 2012;3 (20):2948–51. link1

[66] Hansen HA, Viswanathan V, Nørskov JK. Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces. J Phys Chem C 2014;118(13):6706–18. link1

[67] Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 1984;29(11):1503–12. link1

[68] Rossmeisl J, Logadottir A, Nørskov JK. Electrolysis of water on (oxidized) metal surfaces. Chem Phys 2005;319(1–3):178–84. link1

[69] Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. Electrolysis of water on oxide surfaces. J Electroanal Chem (Lausanne Switz) 2007;607(1–2):83–9. link1

[70] Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011;3(7):1159–65. link1

[71] Koper MTM. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem (Lausanne Switz) 2011;660(2):254–60. link1

[72] Viswanathan V, Hansen HA, Rossmeisl J, Nørskov JK. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal 2012;2(8):1654–60. link1

[73] Vojvodic A, Nørskov JK. New design paradigm for heterogeneous catalysts. Natl Sci Rev 2015;2(2):140–3. link1

[74] Pedersen CM, Escudero-Escribano M, Velázquez-Palenzuela A, Christensen LH, Chorkendorff I, Stephens IEL. Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO. Electrochim Acta 2015;179:647–57. link1

[75] Sabatier P. Hydrogénations et déshydrogénations par catalyse. Ber Dtsch Chem Ges 1911;44(3):1984–2001. German. link1

[76] Li X, Hao X, Abudula A, Guan G. Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 2016;4 (31):11973–2000. link1

[77] Morales-Guio CG, Stern LA, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 2014;43(18):6555–69. link1

[78] Fang M, Dong G, Wei R, Ho JC. Hierarchical nanostructures: design for sustainable water splitting. Adv Energy Mater 2017;7(23):1700559. link1

[79] Liu R, Duay J, Lee SB. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun (Camb) 2011;47 (5):1384–404. link1

[80] Tang C, Zhang R, Lu W, Wang Z, Liu D, Hao S, et al. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noblemetal electrocatalyst. Angew Chem Int Ed Engl 2017;56(3):842–6. link1

[81] Xie L, Zhang R, Cui L, Liu D, Hao S, Ma Y, et al. High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew Chem Int Ed 2017;56(4):1064–8. link1

[82] Ji Y, Yang L, Ren X, Cui G, Xiong X, Sun X. Nanoporous CoP3 nanowire array: acid etching preparation and application as a highly active electrocatalyst for the hydrogen evolution reaction in alkaline solution. ACS Sustain Chem Eng 2018;6(9):11186–9. link1

[83] Tang C, Cheng N, Pu Z, Xing W, Sun X. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem Int Ed Engl 2015;54(32):9351–5. link1

[84] Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 2016;28(2):215–30. link1

[85] Brown DE, Mahmood MN, Turner AK, Hall SM, Fogarty PO. Low overvoltage electrocatalysts for hydrogen evolving electrodes. Int J Hydrogen Energy 1982;7(5):405–10. link1

[86] Navarro-Flores E, Chong ZW, Omanovic S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J Mol Catal Chem 2005;226(2):179–97. link1

[87] McKone JR, Sadtler BF, Werlang CA, Lewis NS, Gray HB. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal 2013;3(2):166–9. link1

[88] Gao MR, Xu YF, Jiang J, Yu SH. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 2013;42(7):2986–3017. link1

[89] Faber MS, Jin S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 2014;7(11):3519–42. link1

[90] Mai L, Tian X, Xu X, Chang L, Xu L. Nanowire electrodes for electrochemical energy storage devices. Chem Rev 2014;114(23):11828–62. link1

[91] Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev 2013;113(10):7981–8065. link1

[92] Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S. Highperformance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc 2014;136(28):10053–61. link1

[93] Peng LS, Nie Y, Zhang L, Xiang R, Wang J, Chen HM, et al. Self-assembly- and preshaping-assisted synthesis of molybdenum carbide supported on ultrathin nitrogen-doped graphitic carbon lamellas for the hydrogen evolution reaction. ChemCatChem 2017;9(9):1588–93. link1

[94] Peng LS, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, et al. Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts. ACS Catal 2017;7(12):8184–91. link1

[95] Xiang R, Tong C, Wang Y, Peng LS, Nie Y, Li L, et al. Hierarchical coral-like FeNi(OH)x/Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting. Chin J Catal 2018;39(11):1736–45. link1

[96] Peng LS, Shen JJ, Zhang L, Wang Y, Xiang R, Li J, et al. Graphitized carboncoated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions. J Mater Chem A 2017;5(44):23028–34. link1

[97] Xiong K, Li L, Zhang L, Ding W, Peng LS, Wang Y, et al. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. J Mater Chem A 2015;3(5):1863–7. link1

[98] Xiong K, Huang LP, Gao Y, Zhang HD, Zhuo Y, Shen HZ, et al. Formation of a thin-layer of nickel hydroxide on nickel phosphide nanopillars for hydrogen evolution. Electrochem Commun 2018;92:9–13. link1

[99] Cai WW, Yan L, Liang L, Xing W, Liu CP. Model-based design and optimization of the microscale mass transfer structure in the anode catalyst layer for direct methanol fuel cell. AIChE J 2013;59(3):780–6. link1

[100] Takenaka S, Miyamoto H, Utsunomiya Y, Matsune H, Kishida M. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J Phys Chem C 2014;118 (2):774–83. link1

[101] Ji MB, Wei ZD, Chen SG, Li L. A novel antiflooding electrode for proton exchange membrane fuel cells. J Phys Chem C 2009;113(2):765–71. link1

[102] Ji MB, Wei ZD, Chen SG, Zhang Q, Wang YQ, Qi XQ, et al. A more floodingtolerant oxygen electrode in alkaline electrolyte. Fuel Cells (Weinh) 2010;10 (2):289–98. link1

[103] Wang MJ, Zhao T, Luo W, Mao ZX, Chen SG, Ding W, et al. Quantified mass transfer and superior antiflooding performance of ordered macromesoporous electrocatalysts. AIChE J 2018;64(7):2881–9. link1

[104] Meng FL, Wang ZL, Zhong HX, Wang J, Yan JM, Zhang XB. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv Mater 2016;28(36):7948–55. link1

[105] Liang HW, Wei W, Wu ZS, Feng X, Müllen K. Mesoporous metal-nitrogendoped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 2013;135(43):16002–5. link1

[106] Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metalfree catalyst for the oxygen reduction reaction. Angew Chem Int Ed 2014;53 (6):1570–4. L. link1

[107] Lefèvre M, Proietti E, Jaouen F, Dodelet JP. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009;324 (5923):71–4. link1

[108] Shui J, Chen C, Grabstanowicz L, Zhao D, Liu DJ. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc Natl Acad Sci USA 2015;112 (34):10629–34. link1

[109] Meng Y, Voiry D, Goswami A, Zou X, Huang X, Chhowalla M, et al. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. J Am Chem Soc 2014;136(39):13554–7. link1

[110] Liu X, Zou S, Chen S. Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction. Nanoscale 2016;8 (46):19249–55. link1

[111] Sun TT, Xu LB, Li SY, Chai WX, Huang Y, Yan YS, et al. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Appl Catal B 2016;193:1–8. link1

[112] Shen HJ, Gracia-Espino E, Ma JY, Tang HD, Mamat X, Wagberg T, et al. Atomically FeN2 moieties dispersed on mesoporous carbon: a new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy 2017;35:9–16. link1

[113] Tan HB, Li YQ, Jiang XF, Tang J, Wang ZL, Qian HY, et al. Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. Nano Energy 2017;36:286–94. link1

[114] Kong A, Dong B, Zhu X, Kong Y, Zhang J, Shan Y. Ordered mesoporous Feporphyrin-like architectures as excellent cathode materials for the oxygen reduction reaction in both alkaline and acidic media. Chem Eur J 2013;19 (48):16170–5. link1

[115] Liang J, Du X, Gibson C, Du XW, Qiao SZ. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv Mater 2013;25(43):6226–31. link1

[116] Zhu C, Kim C, Aoki Y, Habazaki H. Nitrogen-doped hierarchical porous carbon architecture incorporated with cobalt nanoparticles and carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Adv Mater Interfaces 2017;4(19):1700583. link1

[117] Wei W, Ge HT, Huang LS, Kuang M, Al-Enizi AM, Zhang LJ, et al. Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction. J Mater Chem A 2017;5(26):13634–8. link1

[118] Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 2014;5(1):4973. link1

[119] Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, et al. Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J Am Chem Soc 2015;137(16):5414–20. link1

[120] Wang W, Chen WH, Miao PY, Luo J, Wei ZD, Chen SL. NaCl crystallites as dualfunctional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-N-C catalyst. ACS Catal 2017;7(9):6144–9. link1

[121] Wang Y, Chen W, Nie Y, Peng L, Ding W, Chen S, et al. Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chem Commun (Camb) 2017;53(83):11426–9. link1

[122] Wang Y, Chen W, Chen Y, Wei B, Chen LH, Peng LS, et al. Carbon-based catalysts by structural manipulation with iron for oxygen reduction reaction. J Mater Chem A 2018;6(18):8405–12. link1

[123] Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 2009;19 (2):189–200. link1

[124] Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 2009;48(1):60–103. link1

[125] Pal J, Pal T. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale 2015;7(34):14159–90. link1

[126] Strmcnik DS, Tripkovic DV, van der Vliet D, Chang KC, Komanicky V, You H, et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J Am Chem Soc 2008;130(46):15332–9. link1

[127] Markovic´ NM, Grgur BN, Ross PN. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J Phys Chem B 1997;101(27):5405–13. link1

[128] Markovic’ NM, Ross PN Jr. Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 2002;45(4–6):117–229. link1

[129] Markovic’a NM, Sarraf ST, Gasteiger HA, Ross PN Jr. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc, Faraday Trans 1996;92(20):3719–25. link1

[130] Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Van der Vliet D, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 2013;5(4):300–6. link1

[131] van der Niet MJ, den Dunnen A, Juurlink LB, Koper MT. Co-adsorption of O and H2O on nanostructured platinum surfaces: does OH form at steps?. Angew Chem Int Ed Engl 2010;49(37):6572–5. link1

[132] Wagner FT, Moylan TE. Identification of surface hydronium: coadsorption of hydrogen-fluoride and water on platinum (111). Surf Sci 1987;182(1– 2):125–49. link1

[133] Baumann P, Pirug G, Reuter D, Bonzel HP. UHV adsorption studies of K/H2O on Pt(111) and O/CH3COOH on Cu(110): orientation and intermediates. Surf Sci 1995;335:186–96. link1

[134] Chang SC, Weaver MJ. In situ infrared spectroscopy at single-crystal metal electrodes: an emerging link between electrochemical and ultrahigh-vacuum surface science. J Phys Chem 1991;95(14):5391–400. link1

[135] Henderson MA. The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 2002;46(1–8):1–308. link1

[136] Li H, Li Y, Koper MT, Calle-Vallejo F. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis. J Am Chem Soc 2014;136 (44):15694–701. link1

[137] van der Niet MJTC, Garcia-Araez N, Hernández J, Feliu JM, Koper MTM. Water dissociation on well-defined platinum surfaces: the electrochemical perspective. Catal Today 2013;202:105–13. link1

[138] Koper MT. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 2011;3(5):2054–73. link1

[139] Calle-Vallejo F, Loffreda D, Koper MT, Sautet P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat Chem 2015;7(5):403–10. link1

[140] Markovic´ NM, Adzˇic´ RR, Cahan BD, Yeager EB. Structural effects in electrocatalysis: oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J Electroanal Chem (Lausanne Switz) 1994;377(1–2):249–59. link1

[141] Zelenay P, Gamboa-Aldeco M, Horányi G, Wieckowski A. Adsorption of anions on ultrathin metal deposits on single-crystal electrodes: part 3. Voltammetric and radiochemical study of bisulfate adsorption on Pt(111) and Pt(poly) electrodes containing silver adatoms. J Electroanal Chem (Lausanne Switz) 1993;357(1–2):307–26. link1

[142] Varga K, Zelenay P, Wieckowski A. Adsorption of anions on ultra-thin metal deposits on single-crystal electrodes: Ⅱ: voltammetric and radiochemical study of bisulfate adsorption on Pt(111) and Pt(poly) electrodes containing copper adatoms. J Electroanal Chem (Lausanne Switz) 1992;330(1– 2):453–67. link1

[143] Gamboa-Aldeco ME, Herrero E, Zelenay PS, Wieckowski A. Adsorption of bisulfate anion on a Pt(100) electrode: a comparison with Pt(111) and Pt(poly). J Electroanal Chem (Lausanne Switz) 1993;348(1–2):451–7. link1

[144] Narayanan R, El-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 2005;109(26):12663–76. link1

[145] Wang C, Daimon H, Lee Y, Kim J, Sun S. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J Am Chem Soc 2007;129(22):6974–5. link1

[146] Wang C, Daimon H, Onodera T, Koda T, Sun S. A general approach to the sizeand shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed Engl 2008;47(19):3588–91. link1

[147] Lee CT, Yang X, Vara M, Gilroy KD, Xia Y. Water-based synthesis of sub-10 nm Pt octahedra and their performance towards the oxygen reduction reaction. ChemNanoMat 2017;3(12):879–84. link1

[148] Bu L, Shao Q, Pi Y, Yao J, Luo M, Lang J, et al. Coupled s-p-d exchange in facetcontrolled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018;4 (2):359–71. link1

[149] Wang C, Sang X, Gamler JTL, Chen DP, Unocic RR, Skrabalak SE. Facetdependent deposition of highly strained alloyed shells on intermetallic nanoparticles for enhanced electrocatalysis. Nano Lett 2017;17(9):5526–32. link1

[150] Gocyla M, Kuehl S, Shviro M, Heyen H, Selve S, Dunin-Borkowski RE, et al. Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy. ACS Nano 2018;12(6):5306–11. link1

[151] Van Santen RA. Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 2009;42(1):57–66. link1

[152] Quan Z, Wang Y, Fang J. High-index faceted noble metal nanocrystals. Acc Chem Res 2013;46(2):191–202. link1

[153] Zhang H, Jin M, Xia Y. Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew Chem Int Ed Engl 2012;51 (31):7656–73. link1

[154] Yu T, Kim DY, Zhang H, Xia Y. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew Chem Int Ed Engl 2011;50(12):2773–7. link1

[155] Zhang ZC, Hui JF, Liu ZC, Zhang X, Zhuang J, Wang X. Glycine-mediated syntheses of Pt concave nanocubes with high-index hk0 facets and their enhanced electrocatalytic activities. Langmuir 2012;28(42):14845–8. link1

[156] Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007;316(5825):732–5. link1

[157] Ye W, Sun Z, Wang C, Ye M, Ren C, Long R, et al. Enhanced O2 reduction on atomically thin Pt-based nanoshells by integrating surface facet, interfacial electronic, and substrate stabilization effects. Nano Res 2018;11(6):3313–26. link1

[158] Luo S, Tang M, Shen PK, Ye S. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv Mater 2017;29(8):201601687. link1

[159] Luo M, Sun Y, Zhang X, Qin Y, Li M, Li Y, et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv Mater 2018;30(10):1705515. link1

[160] Jang Y, Choi KH, Chung DY, Lee JE, Jung N, Sung YE. Self-assembled dendritic Pt nanostructure with high-index facets as highly active and durable electrocatalyst for oxygen reduction. ChemSusChem 2017;10(15):3063–8. link1

[161] Han XP, He GW, He Y, Zhang JF, Zheng XR, Li LL, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv Energy Mater 2018;8(10):1702222. link1

[162] Wang H, Xie Y, Cao H, Li Y, Li L, Xu Z, et al. Flower-like nickel phosphide microballs assembled by nanoplates with exposed high-energy (001) facets: efficient electrocatalyst for the hydrogen evolution reaction. ChemSusChem 2017;10(24):4899–908. link1

[163] Feng LL, Yu G, Wu Y, Li GD, Li H, Sun Y, et al. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc 2015;137(44):14023–6. link1

[164] Gao R, Zhu J, Xiao X, Hu Z, Liu J, Liu X. Facet-dependent electrocatalytic performance of Co3O4 for rechargeable Li–O2 battery. J Phys Chem C 2015;119(9):4516–23. link1

[165] Ling T, Yan DY, Jiao Y, Wang H, Zheng Y, Zheng X, et al. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis. Nat Commun 2016;7(1):12876. link1

[166] Su D, Dou S, Wang G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci Rep 2014;4(1):5767. link1

[167] Zhao Y, Jia X, Chen G, Shang L, Waterhouse GIN, Wu LZ, et al. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J Am Chem Soc 2016;138 (20):6517–24. link1

[168] Su D, Ford M, Wang G. Mesoporous NiO crystals with dominantly exposed 110 reactive facets for ultrafast lithium storage. Sci Rep 2012;2(1):924. link1

[169] Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 2013;135(28):10274–7. link1

[170] Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 2013;12(9):850–5. link1

[171] Wang H, Lu Z, Xu S, Kong D, Cha JJ, Zheng G, et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc Natl Acad Sci USA 2013;110(49):19701–6. link1

[172] Ding Q, Meng F, English CR, Cabán-Acevedo M, Shearer MJ, Liang D, et al. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J Am Chem Soc 2014;136 (24):8504–7. link1

[173] Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci 2014;7(8):2608–13. link1

[174] Luxa J, Mazánek V, Pumera M, Lazar P, Sedmidubsky´ D, Callisti M, et al. 2H? 1T phase engineering of layered tantalum disulfides in electrocatalysis: oxygen reduction reaction. Chem Eur J 2017;23(33):8082–91. link1

[175] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 2013;13 (12):6222–7. link1

[176] Wu G, Wang J, Ding W, Nie Y, Li L, Qi X, et al. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew Chem Int Ed Engl 2016;55(4):1340–4. link1

[177] Gong Y, Ding W, Li Z, Su R, Zhang X, Wang J, et al. Inverse spinel cobalt–iron oxide and N-doped gtraphene composite as an efficient and durable bifuctional catalyst for Li–O2 batteries. ACS Catal 2018;8(5):4082–90. link1

[178] Millet P. Water electrolysis for hydrogen generation. In: Liu RS, Zhang L, Sun XL, Liu HS, Zhang JJ, editors. Electrochemical technologies for energy storage and conversion. Weinheim: Wiley-VCH; 2012. link1

[179] Karunagaran R, Coghlan C, Tung TT, Kabiri S, Tran DNH, Doonan CJ, et al. Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction. New J Chem 2017;41(24):15180–6. link1

[180] Yao W, Jing L, Wei ZD. Transition–metal–oxide based catalysts for oxygen reduction reaction. J Mater Chem A 2018;6(18):8194–209. link1

[181] Liu Y, Xiao C, Lyu M, Lin Y, Cai W, Huang P, et al. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int Ed Engl 2015;54 (38):11231–5. link1

[182] Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, ShaoHorn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 2011;3(7):546–50. link1

[183] Wei C, Feng Z, Scherer GG, Barber J, Shao-Horn Y, Xu ZJ. Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv Mater 2017;29(23):1606800. link1

[184] Smith RD, Prévot MS, Fagan RD, Trudel S, Berlinguette CP. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc 2013;135(31):11580–6. link1

[185] Smith RD, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MK, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013;340(6128):60–3. link1

[186] Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, et al. A reliable aerosol-sprayassisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew Chem Int Ed Engl 2014;53 (29):7547–51. link1

[187] Yang JS, Xu JJ. Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions. Electrochem Commun 2003;5 (4):306–11. link1

[188] Indra A, Menezes PW, Sahraie NR, Bergmann A, Das C, Tallarida M, et al. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides. J Am Chem Soc 2014;136 (50):17530–6. link1

[189] Bergmann A, Martinez-Moreno E, Teschner D, Chernev P, Gliech M, de Araújo JF, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat Commun 2015;6(1):8625. link1

[190] Weber T, Muijsers JC, Niemantsverdriet JW. Structure of amorphous MoS3. J Phys Chem 1995;99(22):9194–200. link1

[191] Merki D, Fierro S, Vrubel H, Hu XL. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci (Camb) 2011;2(7):1262–7. link1

[192] Benck JD, Chen ZB, Kuritzky LY, Forman AJ, Jaramillo TF. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal 2012;2 (9):1916–23. link1

[193] Morales-Guio CG, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res 2014;47(8):2671–81. link1

[194] Ting LRL, Deng YL, Ma L, Zhang YJ, Peterson AA, Yeo BS. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 2016;6(2):861–7. link1

[195] Li Y, Yu Y, Huang Y, Nielsen RA, Goddard III WA, Li Y, et al. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal 2015;5(1):448–55. link1

[196] Li G, Zhang D, Qiao Q, Yu Y, Peterson D, Zafar A, et al. All the catalytic active sites of MoS2 for hydrogen evolution. J Am Chem Soc 2016;138 (51):16632–8. link1

[197] Lee JS, Park GS, Lee HI, Kim ST, Cao R, Liu M, et al. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett 2011;11(12):5362–6. link1

[198] Laursen AB, Vesborg PC, Chorkendorff I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chem Commun (Camb) 2013;49(43):4965–7. link1

[199] Wang T, Zhuo J, Du K, Chen B, Zhu Z, Shao Y, et al. Electrochemically fabricated polypyrrole and MoSx copolymer films as a highly active hydrogen evolution electrocatalyst. Adv Mater 2014;26(22):3761–6. link1

[200] Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, et al. Molybdenum sulfide/Ndoped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 2014;14(3):1228–33. link1

[201] Chang YH, Lin CT, Chen TY, Hsu CL, Lee YH, Zhang W, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv Mater 2013;25(5):756–60. link1

[202] Ge X, Chen L, Zhang L, Wen Y, Hirata A, Chen M. Nanoporous metal enhanced catalytic activities of amorphous molybdenum sulfide for high-efficiency hydrogen production. Adv Mater 2014;26(19):3100–4. link1

[203] Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 2013;25(40):5807–13. link1

[204] Zhang G, Kirkman PM, Patel AN, Cuharuc AS, McKelvey K, Unwin PR. Molecular functionalization of graphite surfaces: basal plane versus step edge electrochemical activity. J Am Chem Soc 2014;136(32):11444–51. link1

[205] Pei DN, Gong L, Zhang AY, Zhang X, Chen JJ, Mu Y, et al. Defective titanium dioxide single crystals exposed by high-energy 001 facets for efficient oxygen reduction. Nat Commun 2015;6(1):8696. link1

[206] Asset T, Chattot R, Fontana M, Mercier-Guyon B, Job N, Dubau L, et al. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles. ChemPhysChem 2018;19 (13):1552–67. link1

[207] Halck NB, Petrykin V, Krtil P, Rossmeisl J. Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction. Phys Chem Chem Phys 2014;16 (27):13682–8. link1

[208] Yang MQ, Wang J, Wu H, Ho GW. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018;14(15):1703323. link1

[209] Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Defect chemistry of nonpreciousmetal electrocatalysts for oxygen reactions. Adv Mater 2017;29 (48):1606459. link1

[210] Cheng F, Shen J, Peng B, Pan Y, Tao Z, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat Chem 2011;3(1):79–84. link1

[211] Ma TY, Zheng Y, Dai S, Jaroniec M, Qiao SZ. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. J Mater Chem A 2014;2(23):8676–82. link1

[212] Li L, Feng XH, Nie Y, Chen SG, Shi F, Xiong K, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal 2015;5(8):4825–32. link1

[213] Zhou X, Jiang J, Ding T, Zhang J, Pan B, Zuo J, et al. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for highperformance hydrogen evolution. Nanoscale 2014;6(19):11046–51. link1

[214] Woods JM, Jung Y, Xie Y, Liu W, Liu Y, Wang H, et al. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 2016;10(2):2004–9. link1

[215] Wang Y, Li J, Wei Z. Recent progress of carbon-based materials in oxygen reduction reaction catalysis. ChemElectroChem 2018;5(14):1764–74. link1

[216] Zheng Y, Jiao Y, Qiao SZ. Engineering of carbon-based electrocatalysts for emerging energy conversion: from fundamentality to functionality. Adv Mater 2015;27(36):5372–8. link1

[217] Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv Mater 2017;29(13):1604103. link1

[218] Jin H, Huang H, He Y, Feng X, Wang S, Dai L, et al. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. J Am Chem Soc 2015;137(24):7588–91. link1

[219] Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal 2015;5 (11):6707–12. link1

[220] Zhao HY, Sun CH, Jin Z, Wang DW, Yan XC, Chen ZG, et al. Carbon for the oxygen reduction reaction: a defect mechanism. J Mater Chem A 2015;3 (22):11736–9. link1

[221] Zhao XJ, Zou XQ, Yan XC, Brown CL, Chen ZG, Zhu GS, et al. Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorg Chem Front 2016;3(3):417–21. link1

[222] Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 2016;28 (43):9532–8. link1

[223] Tang C, Zhang R, Lu W, He L, Jiang X, Asiri AM, et al. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv Mater 2017;29(2):1602441. link1

[224] Zhang X, Zhang X, Xu HM, Wu ZS, Wang HL, Liang YY. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv Funct Mater 2017;27(24):1606635. link1

[225] Liu TT, Liu DN, Qu FL, Wang DX, Zhang L, Ge RX, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv Energy Mater 2017;7 (15):1700020. link1

[226] Lin HL, Liu N, Shi ZP, Guo YL, Tang Y, Gao QS. Cobalt-doping in molybdenumcarbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater 2016;26(31):5590–8. link1

[227] Pan Y, Liu Y, Lin Y, Liu C. Metal doping effect of the M-Co2P/nitrogen-doped carbon nanotubes (M = Fe, Ni, Cu) hydrogen evolution hybrid catalysts. ACS Appl Mater Interfaces 2016;8(22):13890–901. link1

[228] Ji D, Peng LS, Shen JJ, Deng MM, Mao ZX, Tan LQ, et al. Inert V2O3 oxide promotes the electrocatalytic activity of Ni metal for alkaline hydrogen evolution. Chem Comm 2019;55(22):3290–3. link1

[229] Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, et al. Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal 2017;7(1):98–102. link1

[230] Wu K. Iron-doped cobalt phosphate nanoparticles as multifunctional hydrogen evolution catalyst. Acta Phys Chim Sin 2016;32(12):2819–20. link1

[231] Xiao M, Wang SC, Thaweesak S, Luo B, Wang LZ. Tantalum (Oxy)nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering 2017;3(3):365–78. link1

[232] Zheng X, Peng L, Li L, Yang N, Yang Y, Li J, et al. Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction. Chem Sci (Camb) 2018;9(7):1822–30. link1

[233] Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 2008;140:219–31. link1

[234] Zhang K, Kim HJ, Lee JT, Chang GW, Shi X, Kim W, et al. Unconventional pore and defect generation in molybdenum disulfide: application in high-rate lithium-ion batteries and the hydrogen evolution reaction. ChemSusChem 2014;7(9):2489–95. link1

[235] Lv XJ, She GW, Zhou SX, Li YM. Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Adv 2013;3(44):21231–6. link1

[236] Sun X, Dai J, Guo Y, Wu C, Hu F, Zhao J, et al. Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale 2014;6(14):8359–67. link1

[237] Wang HT, Tsai C, Kong DS, Chan K, Abild-Pedersen F, Nørskov JK, et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res 2015;8(2):566–75. link1

[238] Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 2013;135(47):17881–8. link1

[239] Zhang L, Wang XY, Zheng XQ, Peng LS, Shen JJ, Xiang R, et al. Oxygenincorporated NiMoP2 nanowire arrays for enhanced hydrogen evolution activity in alkaline solution. ACS Appl Energy Mater 2018;1(10):5482–9. link1

[240] Duan JJ, Chen S, Jaroniec M, Qiao SZ. Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal 2015;5 (9):5207–34. link1

[241] Liu J, Song P, Ning ZG, Xu WL. Recent advances in heteroatom-doped metalfree electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis 2015;6(2):132–47. link1

[242] Zhang JT, Dai LM. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal 2015;5(12):7244–53. link1

[243] Cui H, Zhou Z, Jia D. Heteroatom-doped graphene as electrocatalysts for air cathodes. Mater Horiz 2017;4(1):7–19. link1

[244] Zhou W, Jia J, Lu J, Yang L, Hou D, Li G, et al. Recent developments of carbonbased electrocatalysts for hydrogen evolution reaction. Nano Energy 2016;28:29–43. link1

[245] Bayatsarmadi B, Zheng Y, Vasileff A, Qiao SZ. Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 2017;13 (21):13. link1

[246] Li R, Wei ZD, Gou XL, Xu W. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv 2013;3 (25):9978–84. link1

[247] Li R, Wei ZD, Gou XL. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal 2015;5(7):4133–42. link1

[248] Yang N, Li L, Li J, Ding W, Wei Z. Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts via the triple effect: charge, spin density and ligand effect. Chem Sci (Camb) 2018;9(26):5795–804. link1

[249] Wang H, Yang N, Li W, Ding W, Chen K, Li J, et al. Understanding the roles of nitrogen configurations in hydrogen evolution: trace atomic cobalt boosts the activity of planar nitrogen-doped graphene. ACS Energy Lett 2018;3 (6):1345–52. link1

[250] Zhang ZC, Xu B, Wang X. Engineering nanointerfaces for nanocatalysis. Chem Soc Rev 2014;43(22):7870–86. link1

[251] Shi J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem Rev 2013;113(3):2139–81. link1

[252] Guo S, Zhang S, Sun S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed Engl 2013;52(33):8526–44. link1

[253] Wang KX, Li XH, Chen JS. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 2015;27(3):527–45. link1

[254] Liang YR, Zhang WC, Wu DC, Ni QQ, Zhang MQ. Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage. Adv Mater Interfaces 2018;5(14):1800430. link1

[255] Dang K, Wang T, Li C, Zhang J, Liu S, Gong J. Improved oxygen evolution kinetics and surface states passivation of Ni-Bi Co-catalyst for a hematite photoanode. Engineering 2017;3(3):285–9. link1

[256] Bai S, Xiong Y. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem Commun (Camb) 2015;51(51):10261–71. link1

[257] Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat Commun 2017;8(1):15437. link1

[258] Xue ZH, Su H, Yu QY, Zhang B, Wang HH, Li XH, et al. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv Energy Mater 2017;7 (12):1602355. link1

[259] Xu H, Shi ZX, Tong YX, Li GR. Porous microrod arrays constructed by carbonconfined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv Mater 2018;30(21):1705442. link1

[260] Hu L, Song XF, Zhang SL, Zeng HB, Zhang XJ, Marks R, et al. MoS2 nanoparticles coupled to SnS2 nanosheets: the structural and electronic modulation for synergetic electrocatalytic hydrogen evolution. J Catal 2018;366:8–15. link1

[261] Zhou X, Liu Y, Ju H, Pan B, Zhu J, Ding T, et al. Design and epitaxial growth of MoSe2–NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem Mater 2016;28(6):1838–46. link1

[262] Zhao D, Pi Y, Shao Q, Feng Y, Zhang Y, Huang X. Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface. ACS Nano 2018;12(6):6245–51. link1

[263] Yang J, Zhu G, Liu Y, Xia J, Ji Z, Shen X, et al. Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: a new and efficient electrocatalyst for oxygen evolution reaction. Adv Funct Mater 2016;26 (26):4712–21. link1

[264] Zhao S, Jin R, Song Y, Zhang H, House SD, Yang JC, et al. Atomically precise gold nanoclusters accelerate hydrogen evolution over MoS2 nanosheets: the dual interfacial effect. Small 2017;13(43):1701519. link1

[265] Huang J, Su Y, Zhang Y, Wu W, Wu C, Sun Y, et al. FeOx/FeP hybrid nanorods neutral hydrogen evolution electrocatalysis: insight into interface. J Mater Chem A 2018;6(20):9467–72. link1

[266] Deng Z, Wang J, Nie Y, Wei Z. Tuning the interface of Ni@Ni(OH)2/Pd/rGO catalyst to enhance hydrogen evolution activity and stability. J Power Sources 2017;352:26–33. link1

[267] Kim M, Kim S, Song D, Oh S, Chang KJ, Cho E. Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl Catal B 2018;227:340–8. link1

[268] Yu X, Zhao J, Zheng LR, Tong Y, Zhang M, Xu G, et al. Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett 2018;3(1):237–44. link1

[269] Han X, Wu X, Deng Y, Liu J, Lu J, Zhong C, et al. Ultrafine Pt nanoparticledecorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv Energy Mater 2018;8 (24):1800935. link1

[270] Peng L, Zheng X, Li L, Zhang L, Yang N, Xiong K, et al. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Appl Catal B 2019;245:122–9. link1

[271] Peng L, Shen J, Zheng X, Xiang R, Deng M, Mao Z, et al. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting. J Catal 2019;369:345–51. link1

[272] An L, Li Y, Luo M, Yin J, Zhao YQ, Xu C, et al. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv Funct Mater 2017;27(42):1703779. link1

[273] Liu J, Zheng Y, Zhu D, Vasileff A, Ling T, Qiao SZ. Identification of pHdependent synergy on Ru/MoS2 interface: a comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017;9(43):16616–21. link1

[274] Guo K, Zou Z, Du J, Zhao Y, Zhou B, Xu C. Coupling FeSe2 with CoSe: an effective strategy to create stable and efficient electrocatalysts for water oxidation. Chem Commun (Camb) 2018;54(79):11140–3. link1

[275] Ni B, He P, Liao W, Chen S, Gu L, Gong Y, et al. Surface oxidation of AuNi heterodimers to achieve high activities toward hydrogen/oxygen evolution and oxygen reduction reactions. Small 2018;14(14):1703749. link1

[276] Zhu C, Wang AL, Xiao W, Chao D, Zhang X, Tiep NH, et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv Mater 2018;30(13):1705516. link1

[277] Huang J, Sun Y, Du X, Zhang Y, Wu C, Yan C, et al. Cytomembrane-structureinspired active Ni-N-O interface for enhanced oxygen evolution reaction. Adv Mater 2018;30(39):1803367. link1

[278] Li Y, Yin J, An L, Lu M, Sun K, Zhao YQ, et al. FeS2 /CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018;14(26):1801070. link1

[279] Gao W, Xia Z, Cao F, Ho JC, Jiang Z, Qu Y. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: embedded or surface-loaded. Adv Funct Mater 2018;28 (11):1706056. link1

[280] Hu W, Zhang Y, Song D, Wang Y. Amorphous Ni-Mo-Fe alloy as the electrode for hydrogen evolution reaction of alkaline water electrolysis. J Funct Mater 1995;5:456–8. link1

[281] Han Q, Wei X, Liu K. Development of nickel alloys as HER cathodes for water electrolysis. Chin J Nonferr Metal 2001;11(z1):158–62. Chinese. link1

[282] Peng X, Omasta TJ, Roller JM, Mustain WE. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Front Energy 2017;11(3):299–309. link1

[283] Chang QW, Xu Y, Zhu SQ, Xiao F, Shao MH. Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction. Front Energy 2017;11 (3):254–9. link1

[284] Wang Z, Ren X, Luo Y, Wang L, Cui G, Xie F, et al. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018;10(26):12302–7. link1

[285] Jakšic´ MM. Electrocatalysis of hydrogen evolution in the light of the brewerengel theory for bonding in metals and intermetallic phases. Electrochim Acta 1984;29(11):1539–50. link1

[286] Raj IA. Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial-production of hydrogen from alkaline-water electrolytic cells. J Mater Sci 1993;28(16):4375–82. link1

[287] Zhang L, Xiong K, Nie Y, Wang XX, Liao JH, Wei ZD. Sputtering nickelmolybdenum nanorods as an excellent hydrogen evolution reaction catalyst. J Power Sources 2015;297:413–8. link1

[288] Bing Y, Liu H, Zhang L, Ghosh D, Zhang J. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 2010;39(6):2184–202. link1

[289] Antolini E, Salgado JRC, Gonzalez ER. The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt–Co catalyst. J Power Sources 2006;160(2):957–68. link1

[290] Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton-exchange membrane fuel-cells. J Electroanal Chem (Lausanne Switz) 1993;357(1–2):201–24. link1

[291] Colón-Mercado HR, Popov BN. Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 2006;155(2):253–63. link1

[292] Murthi VS, Izzo E, Bi W, Guerrero S, Protsailo L. Highly dispersed alloy catalyst for durability. South Windsor: UTC power Corporation; 2013.

[293] Greeley J, Stephens IE, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 2009;1(7):552–6. link1

[294] Bampos G, Bebelis S, Kondarides DI, Verykios X. Comparison of the activity of Pd–M (M: Ag Co, Cu, Fe, Ni, Zn) bimetallic electrocatalysts for oxygen reduction reaction. Top Catal 2017;60(15–16):1260–73. link1

[295] Faber MS, Lukowski MA, Ding Q, Kaiser NS, Jin S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction electrocatalysis. J Phys Chem C 2014;118 (37):21347–56. link1

[296] Kiran V, Mukherjee D, Jenjeti RN, Sampath S. Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS2(1–x)Se2x. Nanoscale 2014;6(21):12856–63. link1

[297] Xu C, Peng S, Tan C, Ang H, Tan H, Zhang H, et al. Ultrathin S-doped nanosheets for efficient hydrogen evolution. J Mater Chem A 2014;2 (16):5597–601. link1

[298] Xu K, Wang F, Wang Z, Zhan X, Wang Q, Cheng Z, et al. Componentcontrollable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 2014;8(8):8468–76. link1

[299] Gong Q, Cheng L, Liu C, Zhang M, Feng Q, Ye H, et al. Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal 2015;5(4):2213–9. link1

[300] Cabán-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang HC, et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 2015;14(12):1245–51. link1

Related Research