Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 6 doi: 10.1016/j.eng.2019.10.011

Optimal Antibody Purification Strategies Using Data-Driven Models

a School of Management, Harbin Institute of Technology, Harbin 150001, China
b School of Management, Swansea University, Swansea SA1 8EN, UK
c Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK

Received:2018-10-31 Revised:2018-12-15 Accepted: 2018-12-21 Available online:2019-10-18

Next Previous


This work addresses the multiscale optimization of the purification processes of antibody fragments. Chromatography decisions in the manufacturing processes are optimized, including the number of chromatography columns and their sizes, the number of cycles per batch, and the operational flow velocities. Data-driven models of chromatography throughput are developed considering loaded mass, flow velocity, and column bed height as the inputs, using manufacturing-scale simulated datasets based on microscale experimental data. The piecewise linear regression modeling method is adapted due to its simplicity and better prediction accuracy in comparison with other methods. Two alternative mixed-integer nonlinear programming (MINLP) models are proposed to minimize the total cost of goods per gram of the antibody purification process, incorporating the data-driven models. These MINLP models are then reformulated as mixed-integer linear programming (MILP) models using linearization techniques and multiparametric disaggregation. Two industrially relevant cases with different chromatography column size alternatives are investigated to demonstrate the applicability of the proposed models.


Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6


[1]  Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 2012;47:145–56. link1

[2]  Thoben KD, Wiesner S, Wuest T. ‘‘Industrie 4.0” and smart manufacturing—a review of research issues and application examples. Int J Automat Technol 2017;11(1):4–16. link1

[3]  Kang HS, Lee JY, Choi SS, Kim H, Park JH, Son JY, et al. Smart manufacturing: past research, present findings, and future directions. Int J Pr Eng Man-GT 2016;3(1):111–28. link1

[4]  Bogle IDL. A perspective on smart process manufacturing research challenges for process systems engineers. Engineering 2017;3(2):161–5. link1

[5]  Simaria AS, Turner R, Farid SS. A multi-level meta-heuristic algorithm for the optimisation of antibody purification processes. Biochem Eng J 2012;69:144–54. link1

[6]  Brunet R, Guillén-Gosálbez G, Pérez-Correa JR, Caballero JA, Jiménez L. Hybrid simulation-optimization based approach for the optimal design of singleproduct biotechnological processes. Comput Chem Eng 2012;37:125–35. link1

[7]  Allmendinger R, Simaria AS, Farid SS. Efficient discovery of chromatography equipment sizing strategies for antibody purification processes using evolutionary computing. In: Proceedings of the 12th International Conference on Parallel Problem Solving from Nature-Volume Part II; 2012 Sep 1–5; Taormina, Italy. Berlin: Springer; 2012. p. 468–77. link1

[8]  Allmendinger R, Simaria AS, Turner R, Farid SS. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture. J Chem Technol Biotechnol 2014;89(10):1481–90. link1

[9]  Allmendinger R, Simaria AS, Farid SS. Multiobjective evolutionary optimization in antibody purification process design. Biochem Eng J 2014;91:250–64. link1

[10]  [0] Martagan T, Krishnamurthy A, Leland PA, Maravelias CT. Performance guarantees and optimal purification decisions for engineered proteins. Oper Res 2018;66(1):18–41. link1

[11]  Asenjo JA, Montagna JM, Vecchietti AR, Iribarren OA, Pinto JM. Strategies for the simultaneous optimization of the structure and the process variables of a protein production plant. Comput Chem Eng 2000;24(9–10):2277–90. link1

[12]  Montagna JM, Vecchietti AR, Iribarren OA, Pinto JM, Asenjo JA. Optimal design of protein production plants with time and size factor process models. Biotechnol Prog 2000;16(2):228–37. link1

[13]  Pinto JM, Montagna JM, Vecchietti AR, Iribarren OA, Asenjo JA. Process performance models in the optimization of multiproduct protein production plants. Biotechnol Bioeng 2001;74(6):451–65. link1

[14]  Simeonidis E, Pinto JM, Lienqueo ME, Tsoka S, Papageorgiou LG. MINLP models for the synthesis of optimal peptide tags and downstream protein processing. Biotechnol Prog 2005;21(3):875–84. link1

[15]  Liu S, Simaria AS, Farid SS, Papageorgiou LG. Mixed integer optimisation of antibody purification processes. In: Kraslawski A, Turunen I, editors. Computer aided chemical engineering. Proceedings of the 23rd European Symposium on Computer Aided Process Engineering; 2013 June 9–12; Lappeenranta, Finland. Amsterdam: Elsevier; 2013. p. 157–62.

[16]  Liu S, Simaria AS, Farid SS, Papageorgiou LG. Designing cost-effective biopharmaceutical facilities using mixed-integer optimization. Biotechnol Prog 2013;29(6):1472–83. link1

[17]  Liu S, Simaria AS, Farid SS, Papageorgiou LG. Optimising chromatography strategies of antibody purification processes by mixed integer fractional programming techniques. Comput Chem Eng 2014;68:151–64. link1

[18]  Liu S, Simaria AS, Farid SS, Papageorgiou LG. Mathematical programming approaches for downstream processing optimisation of biopharmaceuticals. Chem Eng Res Des 2015;94:18–31. link1

[19]  Liu S, Farid SS, Papageorgiou LG. Integrated optimization of upstream and downstream processing in biopharmaceutical manufacturing under uncertainty: a chance constrained programming approach. Ind Eng Chem Res 2016;55(16):4599–612. link1

[20]  Liu S, Gerontas S, Gruber D, Turner R, Titchener-Hooker NJ, Papageorgiou LG. Optimization-based framework for resin selection strategies in biopharmaceutical purification process development. Biotechnol Prog 2017;33(4):1116–26. link1

[21]  Liu S, Papageorgiou LG. Optimal production of biopharmaceutical manufacturing. In: Yuan Z, Singh R, editors. Process systems engineering for pharmaceutical manufacturing. Computer aided chemical engineering. Amsterdam: Elsevier; 2018. p. 569–95. link1

[22]  Liu S, Papageorgiou LG. Multi-objective optimisation for biopharmaceutical manufacturing under uncertainty. Comput Chem Eng 2018;119:383–93. link1

[23]  Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review. Comput Chem Eng 2018;108:250–67. link1

[24]  Wang GG, Shan S. Review of metamodeling techniques in support of engineering design optimization. J Mech Des 2007;129(4):370–80. link1

[25]  Forrester A, Sóbester A, Keane A. Engineering Design via Surrogate Modelling: A Practical Guide. Chichester: John Wiley & Sons; 2008. link1

[26]  Song M, Breneman CM, Bi J, Sukumar N, Bennett KP, Cramer S, et al. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. J Chem Inf Comput Sci 2002;42 (6):1347–57. link1

[27]  Mandenius CF, Brundin A. Bioprocess optimization using design-ofexperiments methodology. Biotechnol Prog 2008;24(6):1191–203. link1

[28]  Ghose S, Zhang J, Conley L, Caple R, Williams KP, Cecchini D. Maximizing binding capacity for protein A chromatography. Biotechnol Prog 2014;30 (6):1335–40. link1

[29]  Wang G, Briskot T, Hahn T, Baumann P, Hubbuch J. Root cause investigation of deviations in protein chromatography based on mechanistic models and artificial neural networks. J Chromatogr A 2017;1515:146–53. link1

[30]  Nagrath D, Messac A, Bequette BW, Cramer SM. A hybrid model framework for the optimization of preparative chromatographic processes. Biotechnol Prog 2004;20(1):162–78. link1

[31]  Pirrung SM, van der Wielen LAM, van Beckhoven RFWC, van de Sandt EJAX, Eppink MHM, Ottens M. Optimization of biopharmaceutical downstream processes supported by mechanistic models and artificial neural networks. Biotechnol Prog 2017;33(3):696–707. link1

[32]  Nascimento A, Pinto IF, Chu V, Aires-Barros MR, Conde JP, Azevedo AM. Studies on the purification of antibody fragments. Sep Purif Technol 2018;195:388–97. link1

[33]  Scanlan C, Shumway J, Castano J, Wagner M, Waghmare R. Challenges and strategies for the downstream purification and formulation of Fab antibody fragments. Biopharm Int 2014;27(1):42–4. link1

[34]  Gerontas S, Asplund M, Hjorth R, Bracewell DG. Integration of scaledown experimentation and general rate modelling to predict manufacturing scale chromatographic separations. J Chromatogr A 2010;1217 (44):6917–26. link1

[35]  Boushaba R, Baldascini H, Gerontas S, Titchener-Hooker NJ, Bracewell DG. Demonstration of the use of windows of operation to visualize the effects of fouling on the performance of a chromatographic step. Biotechnol Prog 2011;27(4):1009–17. link1

[36]  Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KK. Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Netw 2000;11 (5):1188–93. link1

[37]  MacKay DJC. Introduction to Gaussian processes. In: Bishop CM, editor. Neutral networks and machine learning, NATO ASI series: Ser. F: computer and systems science. Berlin: Springer; 1998. p. 133–66. link1

[38]  Wang Y, Witten IH. Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference on Machine Learning; 2002 July 8–12; Sydney, NSW, Australia; 2002. p. 650–7. link1

[39]  Box GEP, Draper NR. Response surfaces, mixtures, and ridge analyses. 2nd ed. Hoboken: John Wiley & Sons; 2007.

[40]  Yang L, Liu S, Tsoka S, Papageorgiou LG. Mathematical programming for piecewise linear regression analysis. Expert Syst Appl 2016;44:156–67. link1

[41]  Frank E, Hall MA, Witten IH. Data mining: practical machine learning tools and techniques. 4th ed. San Francisco: Morgan Kaufmann; 2016.

[42]  GAMS Development Corporation. GAMS: a user’s guide. Washington, DC: GAMS Development Corporation; 2016. link1

[43]  Glover F. Improved linear integer programming formulations of nonlinear integer problems. Manage Sci 1975;22(4):455–60. link1

[44]  Kolodziej S, Castro PM, Grossmann IE. Global optimization of bilinear programs with a multiparametric disaggregation technique. J Glob Optim 2013;57(4):1039–63. link1

[45]  Castro PM. Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems. J Glob Optim 2016;64(4):765–84. link1

[46]  Koleva MN, Styan CA, Papageorgiou LG. Optimisation approaches for the synthesis of water treatment plants. Comput Chem Eng 2017;106:849–71. link1

[47]  Lin MH, Carlsson JG, Ge D, Shi J, Tsai JF. A review of piecewise linearization methods. Math Probl Eng 2013;2013:101376. link1

[48]  Langer ES, Rader RA. Single-use technologies in biopharmaceutical manufacturing: a 10-year review of trends and the future. Eng Life Sci 2014;14(3):238–43. link1

Related Research