Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 2 doi: 10.1016/j.eng.2019.11.006

Computational Design of Rare-Earth Reduced Permanent Magnets

a Department for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt 2700, Austria

b Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden

c International Research Centre in Critical Raw Materials for Advanced Industrial Technologies, University of Burgos, Burgos 09001, Spain

d IT4Innovations, VŠB-Technical University of Ostrava, Ostrava-Poruba 70833, Czech Republic

Received: 2018-06-29 Revised: 2018-12-20 Accepted: 2019-03-11 Available online: 2019-11-21

Next Previous

Abstract

Multiscale simulation is a key research tool in the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition. Iron (Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms. The intrinsic properties computed by ab initio simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure. Using machine learning techniques, the magnet’s structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated. Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases. The following pairs (coercive field (T), energy density product (kJ·m−3)) were obtained for iron-tin-antimony (Fe3Sn0.75Sb0.25): (0.49, 290), L10-ordered iron-nickel (L10 FeNi): (1, 400), cobalt-iron-tantalum (CoFe6Ta): (0.87, 425), and manganese-aluminum (MnAl): (0.53, 80).

Figures

Fig. 1

Fig. 2

Fig. 5.

References

[ 1 ] Constantinides S. Permanent magnets in a changing world market. Magn Mag 2016;Spring:6–9. link1

[ 2 ] Nakamura H. The current and future status of rare earth permanent magnets. Scr Mater 2018;154:273–6. link1

[ 3 ] Coey JMD. Permanent magnets: plugging the gap. Scr Mater 2012;67 (6):524–9. link1

[ 4 ] Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T, Exl L, et al. On the limits of coercivity in permanent magnets. Appl Phys Lett 2017;111 (7):072404. link1

[ 5 ] Nieves P, Arapan S, Hadjipanayis GC, Niarchos D, Barandiaran JM, Cuesta-López S. Applying high-throughput computational techniques for discovering nextgeneration of permanent magnets. Phys Status Solidi C 2016;13(10– 12):942–50. link1

[ 6 ] Nieves P, Arapan S, Cuesta-López S. Exploring the crystal structure space of CoFe2P by using adaptive genetic algorithm methods. IEEE Trans Magn 2017;53(11):1–5. link1

[ 7 ] Arapan S, Nieves P, Cuesta-López S. A high-throughput exploration of magnetic materials by using structure predicting methods. J Appl Phys 2018;123 (8):083904. link1

[ 8 ] Wills JM, Alouani M, Andersson P, Delin A, Eriksson O, Grechnyev O. Fullpotential electronic structure method: energy and force calculations with density functional and dynamical mean field theory. Berlin: Springer-Verlag; 2010. link1

[ 9 ] Fischbacher J, Kovacs A, Gusenbauer M, Oezelt H, Exl L, Bance S, et al. Micromagnetics of rare-earth efficient permanent magnets. J Phys Appl Phys 2018;51(19):193002. link1

[10] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59(3):1758–75. link1

[11] Quey R, Renversade L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data. Comput Methods Appl Mech Eng 2018;330:308–33. link1

[12] Salome-platform [Internet]. Guyancourt: OPEN CASCADE SAS; c2005–2019 [cited 2018 Feb 1]. Available from: http://www.salomeplatform.org/. link1

[13] Exl L, Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T. Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization. Comput Phys Commun 2019;235:179–86. link1

[14] Adams BM, Bohnhoff WJ, Dalbey KR, Eddy JP, Eldred MS, Gay DM, et al. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual. Livermore: Sandia National Laboratories; 2009. Report No.: SAND2010-2183.

[15] Gaunt P. Magnetic viscosity in ferromagnets: I. phenomenological theory. Philos Mag 1976;34(5):775–80. link1

[16] Carilli MF, Delaney KT, Fredrickson GH. Truncation-based energy weighting string method for efficiently resolving small energy barriers. J Chem Phys 2015;143(5):054105. link1

[17] Nieves P, Arapan S, Maudes-Raedo J, Marticorena-Sánchez R, Brío ND, Kovacs A, et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput Mater Sci 2019;168:188–202. link1

[18] Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#115_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http://crono.ubu.es/novamag/show_item_features?mafid=1574. link1

[19] Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#160_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1545. link1

[20] Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#38_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1534. link1

[21] Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#63_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1579. link1

[22] Material features: NOVAMAG_theory_ICCRAM_Co4Fe24Ta4_#8_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1551. link1

[23] Lizárraga R, Pan F, Bergqvist L, Holmström E, Gercsi Z, Vitos L. First principles theory of the hcp–fcc phase transition in cobalt. Sci Rep 2017;7(1):3778. link1

[24] Sales BC, Saparov B, McGuire MA, Singh DJ, Parker DS. Ferromagnetism of Fe3Sn and alloys. Sci Rep 2014;4(1):7024. link1

[25] Vekilova OY, Fayyazi B, Skokov KP, Gutfleisch O, Echevarria-Bonet C, Barandiarán JM, et al. Tuning the magnetocrystalline anisotropy of Fe3Sn by alloying. Phys Rev B 2019;99(2):024421. link1

[26] Kovacs A, Fischbacher J, Oezelt H, Schrefl T, Kaidatzis A, Salikhov R, et al. Micromagnetic simulations for coercivity improvement through nanostructuring of rare-earth free L10-FeNi magnets. IEEE Trans Magn 2017;53 (11):7002205. link1

[27] Niarchos D, Gjoka M, Psycharis V, Devlin E. Towards realization of bulk L10-FeNi. In: Proceedings of 2017 IEEE International Magnetics Conference (INTERMAG); 2017 Apr 24–28; Dublin, Ireland; 2017.

[28] Nieves P, Arapan S, Schrefl T, Cuesta-Lopez S. Atomistic spin dynamics simulations of the MnAl s-phase and its antiphase boundary. Phys Rev B 2017;96(22):224411. link1

[29] Gjoka M, Psycharis V, Devlin E, Niarchos D, Hadjipanayis G. Effect of Zr substitution on the structural and magnetic properties of the series Nd1xZrxFe10Si2 with the ThMn12 type structure. J Alloys Compd 2016;687:240–5. link1

[30] Gabay AM, Cabassi R, Fabbrici S, Albertini F, Hadjipanayis GC. Structure and permanent magnet properties of Zr1xRxFe10Si2 alloys with R = Y, La, Ce, Pr and Sm. J Alloys Compd 2016;683:271–5. link1

[31] Kronmüller H, Fähnle M. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge: Cambridge University Press; 2003. link1

[32] Zickler GA, Fidler J, Bernardi J, Schrefl T, Asali A. A combined TEM/STEM and micromagnetic study of the anisotropic nature of grain boundaries and coercivity in Nd–Fe–B magnets. Adv Mater Sci Eng 2017;2017:6412042. link1

[33] Richter HJ. Model calculations of the angular dependence of the switching field of imperfect ferromagnetic particles with special reference to barium ferrite. J Appl Phys 1989;65(9):3597–601. link1

[34] Wang D, Sellmyer DJ, Panagiotopoulos I, Niarchos D. Magnetic properties of Nd(Fe,Ti)12 and Nd(Fe,Ti)12Nx films of perpendicular texture. J Appl Phys 1994;75(10):6232–4. link1

[35] Bance S, Bittner F, Woodcock TG, Schultz L, Schrefl T. Role of twin and antiphase defects in MnAl permanent magnets. Acta Mater 2017;131:48–56. link1

Related Research