Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 2 doi: 10.1016/j.eng.2019.11.010

Tunable In-Plane Anisotropy in Amorphous Sm–Co Films Grown on (011)- Oriented Single-Crystal Substrates

a Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese
Academy of Sciences, Beijing 100190, China
b School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
c Songshan Lake Materials Laboratory, Dongguan 523808, China
d Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of
Sciences, Ningbo 315201, China
e Fujian Institute of Innovation, Chinese Academy of Sciences, Fuzhou 350108, China

Received: 2018-08-15 Revised: 2018-12-06 Accepted: 2019-03-11 Available online: 2019-11-22

Next Previous

Abstract

Amorphous Sm–Co films with uniaxial in-plane anisotropy have great potential for application in informationstorage media and spintronic materials. The most effective method to produce uniaxial in-plane anisotropy is to apply an in-plane magnetic field during deposition. However, this method inevitably requires more complex equipment. Here, we report a new way to produce uniaxial in-plane anisotropy by growing amorphous Sm–Co films onto (011)-cut single-crystal substrates in the absence of an external magnetic field. The tunable anisotropy constant, kA, is demonstrated with variation in the lattice parameter of the substrates. A kA value as high as about 3.3 × 104 J·m−3 was obtained in the amorphous Sm–Co film grown on a LaAlO3(011) substrate. Detailed analysis indicated that the preferential seeding and growth of ferromagnetic (FM) domains caused by the anisotropic strain of the substrates, along with the formed Sm–Co, Co–Co directional pair ordering, exert a substantial effect. This work provides a new way to obtain in-plane anisotropy in amorphous Sm–Co films.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Gronau M, Geoke H, Schuffler D, Sprenger S. Correlation between domain wall properties and material parameters in amorphous SmCo-films. IEEE Trans Magn 1983;19(5):1653–5. link1

[ 2 ] Magnus F, Moubah R, Roos AH, Kruk A, Kapaklis V, Hase T, et al. Tunable giant magnetic anisotropy in amorphous SmCo thin films. Appl Phys Lett 2013;102 (16):162402. link1

[ 3 ] Gronau M, Schuffler D, Sprenger S. The magnetic properties of amorphous SmCo-films. IEEE Trans Magn 1984;20(1):66–8. link1

[ 4 ] Soltani ML, Lahoubi M, Fillion G, Barbara B. Magnetic properties of amorphous Sm–Co and Er–Co alloys. J Alloys Compd 1998;275–277:602–5. link1

[ 5 ] Magnus F, Moubah R, Arnalds UB, Kapaklis V, Brunner A, Schäfer R, et al. Giant magnetic domains in amorphous SmCo thin films. Phys Rev B Condens Matter Mater Phys 2014;89(22):224420. link1

[ 6 ] Magnus F, Moubah R, Kapaklis V, Andersson G, Hjörvarsson B. Magnetostrictive properties of amorphous SmCo thin films with imprinted anisotropy. Phys Rev B Condens Matter Mater Phys 2014;89 (13):134414. link1

[ 7 ] Numata T, Kiriyama H, Inokuchi S, Sakurai Y. Magnetic anisotropy in SmCo amorphous films. J Appl Phys 1988;64(10):5501–3. link1

[ 8 ] Cheung TD, Wickramasekara L, Cadieue FJ. Large in-plane anisotropy in amorphous Sm–Co and (Sm+Ti)Fe films. J Appl Phys 1985;57(8):3598–600. link1

[ 9 ] Chen K, Hegde H, Cadieu FJ. Induced anisotropy in amorphous Sm–Co sputtered films. Appl Phys Lett 1992;61(15):1861–3. link1

[10] [0] Chen K, Hegde H, Jen SU, Cadieu FJ. Different types of anisotropy in amorphous SmCo films. J Appl Phys 1993;73(10):5923–5. link1

[11] Moubah R, Magnus F, Hjörvarsson B, Andersson G. Strain enhanced magnetic anisotropy in SmCo/BaTiO3 multiferroic heterostructures. J Appl Phys 2014;115(5):053905. link1

[12] Liu M, Howe BM, Grazulis L, Mahalingam K, Nan T, Sun NX, et al. Voltageimpulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv Mater 2013;25(35):4886–92. link1

[13] Ward TZ, Budai JD, Gai Z, Tischler JZ, Yin L, Shen J. Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat Phys 2009;5 (12):885–8. link1

[14] Zhao YY, Wang J, Kuang H, Hu FX, Liu Y, Wu RR, et al. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)- Pr0.7Sr0.3MnO3/PMN–PT heterostructure. Sci Rep 2015;5:9668. link1

[15] Zhou H, Wang L, Hou Y, Huang Z, Lu Q, Wu W. Evolution and control of the phase competition morphology in a manganite film. Nat Commun 2015;6:8980. link1

[16] Suran G, Ounadjela K, Machizaud F. Evidence for structure-related induced anisotropy in amorphous CoTi soft ferromagnetic thin films. Phys Rev Lett 1986;57(24):3109–12. link1

[17] Corb BW, O’Handley RC, Megusar J, Grant NJ. First-order, structural transformations in metallic glasses. Phys Rev Lett 1983;51(15):1386–9. link1

[18] Liu Y, Hu FX, Zhang M, Wang J, Shen FR, Zuo WL, et al. Electric field control of magnetic properties of Nd2Fe14B thin films grown onto PMN–PT substrates. Appl Phys Lett 2017;110(2):022401. link1

Related Research