Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 8 doi: 10.1016/j.eng.2019.12.005

Consistency of MGEX Orbit and Clock Products

German Aerospace Center, German Space Operations Center, Weßling 82234, Germany

Received: 2018-10-31 Revised: 2019-04-18 Accepted: 2019-06-17 Available online: 2019-12-11

Next Previous

Abstract

The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems (GNSSs) Global Positioning System (GPS), GLONASS, Galileo, and BeiDou, as well as for the Japanese regional Quasi-Zenith Satellite System (QZSS). Due to improved solar radiation pressure modeling and other more sophisticated models, the consistency of these products has improved in recent years. The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS, around one decimeter for GLONASS and Galileo, a few decimeters for BeiDou-2, and several decimeters for QZSS. The clock consistency is about 2 cm for GPS, 5 cm for GLONASS and Galileo, and 10 cm for BeiDou-2. In terms of carrier phase modeling error for precise point positioning, the various products exhibit consistencies of 2–3 cm for GPS, 6–14 cm for GLONASS, 3–10 cm for Galileo, and 10–17 cm for BeiDou-2.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Johnston G, Riddell A, Hausler G. The International GNSS Service. In: Teunissen P, Montenbruck O, editors. Springer handbook of global navigation satellite systems. New York: Springer; 2017. p. 967–82. link1

[ 2 ] International GNSS Service: terms of reference [Internet]. Pasadena: International GNSS Service; [cited 2018 Nov 29]. Available from: https://kb. igs.org/hc/en-us/article_attachments/202278237/IGS_Terms_of_Reference__ Adopted_Dec_2014__.pdf. link1

[ 3 ] Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F, et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)— achievements, prospects and challenges. Adv Space Res 2017;59(7):1671–97. link1

[ 4 ] Loyer S, Perosanz F, Mercier F, Capdeville H, Mezerette A. CNES/CLS IGS analysis center: contribution to MGEX and recent activities [poster]. In: 2016 IGS Workshop; 2016 Feb 8–12; Sydney, NSW, Australia; 2016.

[ 5 ] Prange L, Orliac E, Dach R, Arnold D, Beutler G, Schaer S, et al. CODE’s fivesystem orbit and clock solution—the challenges of multi-GNSS data analysis. J Geod 2017;91(4):345–60. link1

[ 6 ] Uhlemann M, Gendt G, Ramatschi M, Deng Z. GFZ global multi-GNSS network and data processing results. In: Rizos C, Willis P, editors. IAG 150 years. New York: Springer; 2015. p. 673–9. link1

[ 7 ] Selmke I, Duan B, Hugentobler U. Status of the TUM MGEX orbit and clock products [presentation]. In: 2018 IGS Workshop; 2018 Oct 29–Nov 2; Wuhan, China; 2018.

[ 8 ] Guo J, Xu X, Zhao Q, Liu J. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 2016;90(2):143–59. link1

[ 9 ] Montenbruck O, Rizos C, Weber R, Weber G, Neilan R, Hugentobler U. Getting a grip on multi-GNSS. GPS World 2013;24(7):44–9. link1

[10] Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U. The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of 2013 ION Pacific PNT Meeting; 2013 Apr 22–25; Honolulu, HI, USA; 2013. p. 289–95.

[11] Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, et al. IGS-MGEX: preparing the ground for multi-constellation GNSS science. Inside GNSS 2014;9(1):42–9. link1

[12] Steigenberger P, Hugentobler U, Loyer S, Perosanz F, Prange L, Dach R, et al. Galileo orbit and clock quality of the IGS multi-GNSS experiment. Adv Space Res 2015;55(1):269–81. link1

[13] Guo F, Li X, Zhang X, Wang J. Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS multi-GNSS experiment (MGEX). GPS Solut 2017;21(1):279–90. link1

[14] Katsigianni G, Loyer S, Perosanz F, Mercier F, Zajdel R, Sos´nica K. Improving Galileo orbit determination using zero-difference ambiguity fixing in a multiGNSS processing. Adv Space Res 2019;63(9):2952–63. link1

[15] An X, Meng X, Chen H, Jiang W, Xi R, Chen Q, et al. Improving integrated precise orbit determination of GPS, GLONASS, BDS and Galileo through integer ambiguity resolution. GPS Solut 2019;23(2):48. link1

[16] Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, et al. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 1994;19(6):367–86. link1

[17] Arnold D, Meindl M, Beutler G, Dach R, Schaer S, Lutz S, et al. CODE’s new solar radiation pressure model for GNSS orbit determination. J Geod 2015;89 (8):775–91. link1

[18] Montenbruck O, Steigenberger P, Hugentobler U. Enhanced solar radiation pressure modeling for Galileo satellites. J Geod 2015;89(3):283–97. link1

[19] Steigenberger P, Montenbruck O. Galileo status: orbits, clocks, and positioning. GPS Solut 2017;21(2):319–31. link1

[20] Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, et al. GNSS satellite geometry and attitude models. Adv Space Res 2015;56 (6):1015–29. link1

[21] Steigenberger P, Fritsche M, Dach R, Schmid R, Montenbruck O, Uhlemann M, et al. Estimation of satellite antenna phase center offsets for Galileo. J Geod 2016;90(8):773–85. link1

[22] Schmid R, Dach R, Collilieux X, Jäggi A, Schmitz M, Dilssner F. Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 2016;90(4):343–64. link1

[23] Galileo satellite metadata [Internet]. Madrid: European GNSS Service Center; [cited 2018 Nov 24]. Available from: https://www.gsc-europa.eu/support-todevelopers/galileo-satellite-metadata. link1

[24] Wanninger L, Beer S. BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solut 2015;19(4):639–48. link1

[25] Dilssner F. A note on the yaw attitude modeling of BeiDou IGSO-6 [Internet]. Darmstadt: ESA/ESOC; 2017 Nov 20; [cited 2018 Nov 24]. Available from: http://navigation-office.esa.int/attachments_24576369_1_BeiDou_IGSO-6_ Yaw_Modeling.pdf. link1

[26] Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 1997;102(B3):5005–17. link1

[27] Montenbruck O, Steigenberger P, Darugna F. Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude. Adv Space Res 2017;59(8):2088–100. link1

[28] Pearlman MR, Degnan JJ, Bosworth JM. The international laser ranging service. Adv Space Res 2002;30(2):135–43. link1

[29] SLRF2014 [Internet]. Greenbelt: ILRS; [cited 2018 Nov 29]. Available from: ftp://ftp.cddis.eosdis.nasa.gov/slr/products/resource. link1

[30] Sos´nica K, Thaller D, Dach R, Steigenberger P, Beutler G, Arnold D, et al. Satellite laser ranging to GPS and GLONASS. J Geod 2015;89(7):725–43. link1

[31] Rodriguez-Solano CJ, Hugentobler U, Steigenberger P. Impact of albedo radiation on GPS satellites. In: Kenyon S, Pacino MC, Marti U, editors. Geodesy for planet Earth. New York: Springer; 2012. p. 113–9. link1

[32] Steigenberger P, Thoelert S, Montenbruck O. GNSS satellite transmit power and its impact on orbit determination. J Geod 2018;92(6):609–24. link1

[33] Rebischung P, Schmid R. IGS14/igs14.atx: a new framework for the IGS products [poster]. In: 2016 AGU Fall Meeting; 2016 Dec 12–16; San Francisco, CA, USA; 2016.

[34] Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 2007;81(12):781–98. link1

[35] Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, et al. Improved antenna phase center models for GLONASS. GPS Solut 2011;15(1):49–65. link1

[36] Dilssner F, Springer T, Schönemann E, Enderle W. Estimation of satellite antenna phase center corrections for BeiDou [poster]. In: 2014 IGS Workshop; 2014 Jun 23–27; Pasadena, CA, USA; 2014.

[37] Montenbruck O, Steigenberger P, Hauschild A. Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solut 2015;19(2):321–33. link1

[38] Montenbruck O, Steigenberger P, Hauschild A. Multi-GNSS signal-in-space range error assessment—methodology and results. Adv Space Res 2018;61 (12):3020–38. link1

[39] Beutler G, Kouba J, Springer T. Combining the orbits of the IGS analysis centers. Bull Geod 1995;69(4):200–22. link1

[40] Weiss JP, Steigenberger P, Springer T. Orbit and clock product generation. In: Teunissen P, Montenbruck O, editors. Springer handbook of global navigation satellite systems. New York: Springer; 2017. p. 983–1010. link1

[41] Fritsche M. Multi-GNSS orbit and clock combination: preliminary results [poster]. In: 2016 IGS Workshop; 2016 Feb 8–12; Sydney, NSW, Australia; 2016.

[42] Sakic P, Mansur G, Viegas E, Männel B, Schuh H. Towards a multi-constellation combination: improving the IGS orbit & clock combination software for MGEX products [presentation]. In: 2018 IGS Workshop; 2018 Oct 29–Nov 2, Wuhan, China; 2018.

[43] MGEX product analysis [Internet]. Pasadena: International GNSS Service; [cited 2019 Nov 22]. Available from: http://mgex.igs.org/analysis/index.php. link1

Related Research