Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 2 doi: 10.1016/j.eng.2019.12.008

Structural and Magnetic Properties of Nanocomposite Nd–Fe–B Prepared by Rapid Thermal Processing

a State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
b Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
c Beijing Key Laboratory for Magnetoelectric Materials and Devices, Collegue of Engineering, Peking University, Beijing 100871, China

Received: 2018-08-22 Revised: 2018-11-11 Accepted: 2019-03-11 Available online: 2020-02-27

Next Previous

Abstract

Nanoscale permanent magnetic materials, which possess excellent magnetic and mechanical properties, thermal stability, and corrosion resistance, have become a research hotspot for permanent magnets. In reality, however, the obtained maximum energy product, (BH)max, is not satisfactory in comparison with the theory limit, especially for exchange-coupled nanocomposite magnets. The construction of an ideal microstructure still remains a challenge in the synthesis and preparation of nanoscale permanent magnets. This work reported the impact of rapid thermal process (RTP) with electron-beam heating on the microstructures of Nd12.5-xFe80.8+xB6.2Nb0.2Ga0.3 (x = 0, 2.5) nanocomposites. It was found that the crystallization time was greatly reduced, from 15 min under the conventional annealing conditions to 0.1 s under the RTP. For Nd2Fe14B single-phase materials, the crystallization temperature of the RTP ribbons decreased by about 248 °C compared with that of the ribbons produced by the conventional annealing method. A synergetic crystallization of the Nd2Fe14B and α-Fe phases was observed under the RTP, which restrained not only the shape, size distribution, and compositions of the hard and the soft phases, but also the interface between them. This modification effect became more obvious as the fraction of Fe increased. Due to the improvement in the uniformity of the Nd2Fe14B and α-Fe phases, and their grain size distribution, better magnetic properties were achieved using RTP in comparison with the conventional annealing method.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 2011;23(7):821–42. link1

[ 2 ] Buschow KHJ. New developments in hard magnetic materials. Rep Prog Phys 1991;54(9):1123–213. link1

[ 3 ] Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y. New material for permanent magnets on a base of Nd and Fe. J Appl Phys 1984;55(6):2083–7. link1

[ 4 ] Sagawa M, Fujimura S, Yamamoto H, Matsuura Y, Hiraga K. Permanent magnet materials based on the rare earth–iron–boron tetragonal compounds. IEEE Trans Magn 1984;20(5):1584–9. link1

[ 5 ] Croat JJ, Herbst JF, Lee RW, Pinkerton FE. Pr–Fe and Nd–Fe-based materials: a new class of high-performance permanent magnets. J Appl Phys 1984;55 (6):2078–82. link1

[ 6 ] Croat JJ, Herbst JF, Lee RW, Pinkerton FE. High-energy product Nd–Fe–B permanent magnets. Appl Phys Lett 1984;44(1):148–9. link1

[ 7 ] Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys 1991;63(4):819–98. link1

[ 8 ] Kim AS, Camp FE. High performance NdFeB magnets. J Appl Phys 1996;79 (8):5035–9. link1

[ 9 ] Marinescu M, Chiriac H, Grigoras M. Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions. J Magn Magn Mater 2005;290–291:1267–9. link1

[10] Gong W, Li Q, Yin L. Temperature feature of NdDyFeB magnets with ultrahigh coercivity. J Appl Phys 1991;69(8):5512–4. link1

[11] Harland CL, Davies HA. Magnetic properties of melt-spun Nd-rich NdFeB alloys with Dy and Ga substitutions. J Alloys Compd 1998;281(1):37–40. link1

[12] Pan M, Zhang P, Li X, Ge H, Wu Q, Jiao Z, et al. Effect of terbium addition on the coercivity of the sintered NdFeB magnets. J Rare Earths 2010;28(Suppl 1):399–402. link1

[13] Kosobudskii ID, Sevost’yanov VP, Kuznetsov MY. Magnetic properties of R-Nd– Fe–B (R = Tb, Dy) and Nd–Fe–Co–B alloys in the range –80 to 250 C. Inorg Mater 2000;36(6):584–6. link1

[14] Kim AS. High coercivity Nd–Fe–B magnets with lower dysprosium content. J Appl Phys 1988;63(8):3519–21. link1

[15] Li S, Gu B, Yang S, Bi H, Dai Y, Tian Z, et al. Thermal behaviour and magnetic properties of B-rich NdFeB nanocomposite hard magnetic alloys with partial substitution of Dy for Nd. J Phys D Appl Phys 2002;35(8):732–7. link1

[16] Liu Z, Davies HA. Elevated temperature study of nanocrystalline (Nd/Pr)–Fe–B hard magnetic alloys with Co and Dy additions. J Magn Magn Mater 2005;290– 1:1230–3. link1

[17] Gong WJ, Wang X, Liu W, Guo S, Wang ZH, Cui WB, et al. Enhancing the perpendicular anisotropy of NdDyFeB films by Dy diffusion process. J Appl Phys 2012;111(7):07A729. link1

[18] Kim AS, Camp FE. Effect of minor grain boundary additives on the magnetic properties of NdFeB magnets. IEEE Trans Magn 1995;31(6):3620–2. link1

[19] Rodewald W, Wall B, Katter M, Uestuener K. Top Nd–Fe–B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity. IEEE Trans Magn 2002;38(5):2955–7. link1

[20] Sugimoto S. Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 2011;44(6):064001. link1

[21] Liu ZW, Davies HA. The practical limits for enhancing magnetic property combinations for bulk nanocrystalline NdFeB alloys through Pr, Co and Dy substitutions. J Magn Magn Mater 2007;313(2):337–41. link1

[22] Sepehri-Amin H, Ohkubo T, Hono K. Grain boundary structure and chemistry of Dy-diffusion processed Nd–Fe–B sintered magnets. J Appl Phys 2010;107 (9):09A745. link1

[23] Li D, Suzuki S, Kawasaki T, Machida K. Grain interface modification and magnetic properties of Nd–Fe–B sintered magnets. Jpn J Appl Phys 2008;47 (10):7876–8. link1

[24] Nakamura H, Hirota K, Ohashi T, Minowa T. Coercivity distributions in Nd–Fe– B sintered magnets produced by the grain boundary diffusion process. J Phys D Appl Phys 2011;44(6):064003. link1

[25] Coehoorn R, de Mooij DB, de Waard C. Meltspun permanent magnet materials containing Fe3B as the main phase. J Magn Magn Mater 1989;80(1):101–4. link1

[26] Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn 1991;27(4):3588–660. link1

[27] Bader SD. Colloquium: opportunities in nanomagnetism. Rev Mod Phys 2006;78(1):1–15. link1

[28] Yue M, Zhang X, Liu JP. Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches. Nanoscale 2017;9 (11):3674–97. link1

[29] Zhang X, Zhang J, Wang W. A novel route for the preparation of nanocomposite magnets. Adv Mater 2000;12(19):1441–4. link1

[30] Tu G, Altounian Z, Ryan DH, Ström-Olsen JO. Crystallization and texturing in rapidly quenched Nd2Fe14B1 and Nd15Fe77B8. J Appl Phys 1988;63(8):3330–2. link1

[31] Jha A, Davies HA, Buckley RA. Glass forming ability and kinetics of crystallisation of rapidly quenched Nd–Fe–B alloys. J Magn Magn Mater 1989;80(1):109–14. link1

[32] Harland CL, Davies HA. Effect of Co and Zr on magnetic properties of nanophase PrFeB alloys. J Appl Phys 2000;87(9):6116–8. link1

[33] Wang Z, Zhou S, Zhang M, Qiao Y, Wang R. Effects of as-quenched structures on the phase transformations and magnetic properties of melt-spun Pr7Fe88B5 ribbons. J Appl Phys 1999;86(12):7010–6. link1

[34] Wang Z, Zhou S, Zhang M, Qiao Y, Gao X, Zhao Q, et al. Microstructure evolution and magnetic properties of overquenched Pr8Fe86B6 ribbons during annealing. J Appl Phys 1999;85(8):4880–2. link1

[35] Imai T, Kojima S, Jiang D. High strain rate superplasticity of SiCp/1100 and SiCp/ 1N90 P/M pure aluminum composites. Mater Sci Eng A 1997;225(1–2):184–7. link1

[36] Chang WC, Hsing DM. Magnetic properties and transmission electron microscopy microstructures of exchange coupled Nd12-xFe82+xB6 melt spun ribbons. J Appl Phys 1996;79(8):4843–5. link1

[37] Chen Z, Zhang Y, Ding Y, Hadjipanayis GC, Chen Q, Ma B. Magnetic properties and microstructure of nanocomposite R2(Fe,Co,Nb)14B/(Fe,Co) (R = Nd, Pr) magnets. J Appl Phys 1999;85(8):5908–10. link1

[38] Yajima K, Nakamura H, Kohmoto O, Yoneyama T. Microstructure of rapidly quenched Nd–Fe–Zr–B magnets. J Appl Phys 1988;64(10):5528–30. link1

[39] Kohmoto O, Yoneyama T, Yajima K. Magnetic properties of rapidly quenched Nd10Fe85-xTxB5 (T = Zr, Nb) alloys. Jpn J Appl Phys 1987;26(Pt 1):1804–5. link1

[40] Chiriac H, Marinescu M, Buschow KHJ, de Boer FR, Bruck E. Nanocrystalline Nd8Fe77Co5CuNb3B6 melt-spun ribbons. J Magn Magn Mater 1999; 203(1–3):153–5. link1

[41] Wu YQ, Ping DH, Hono K, Hamano M, Inoue A. Microstructural characterization of an a-Fe/Nd2Fe14B nanocomposite magnet with a remaining amorphous phase. J Appl Phys 2000;87(12):8658–65. link1

[42] Betancourt I, Davies HA. Influence of Zr and Nb dopant additions on the microstructure and magnetic properties of nanocomposite RE2(Fe,Co)14B/a(Fe, Co) (RE = Nd–Pr) alloys. J Magn Magn Mater 2003;261(3):328–36. link1

[43] Wang C, Yan M, Zhang WY. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd,Pr)2Fe14B/ a-Fe alloys. J Magn Magn Mater 2006;306(2):195–8. link1

[44] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys 1988;64(10):6044–6. link1

[45] McHenry ME, Willard MA, Laughlin DE. Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 1999;44(4):291–433. link1

[46] McGuiness PJ, Short C, Wilson AF, Harris IR. The production and characterization of bonded, hot-pressed and die-upset HDDR magnets. J Alloys Compd 1992;184(2):243–55. link1

[47] Bollero A, Gebel B, Gutfleisch O, Müller KH, Schultz L, McGuiness PJ, et al. NdDyFeBZr high-coercivity powders prepared by intensive milling and the HDDR process. J Alloys Compd 2001;315(1–2):243–50. link1

[48] Bollero A, Gutfleisch O, Müller KH, Schultz L, Drazic G. High-performance nanocrystalline PrFeB-based magnets produced by intensive milling. J Appl Phys 2002;91(10):8159. link1

[49] Zhang XY, Guan Y, Zhang JW, Sprengel W, Reichle KJ, Blaurock K, et al. Evolution of interface structure of a-Fe/Nd2Fe14B nanocomposites prepared by crystallization from the amorphous alloy. Phys Rev B Condens Matter Mater Phys 2002;66(21):212103. link1

[50] Zhang XY, Guan Y, Zhang JW. Study of interface structure of a-Fe/Nd2Fe14B nanocomposite magnets. Appl Phys Lett 2002;80(11):1966–8. link1

[51] Guo D, Li W, Li X, Chen Y, Sato K, Zhang X. Improving the interfacial structure of nanocomposite magnets on an atomic scale. J Phys D Appl Phys 2010;43 (32):325003. link1

[52] Li W, Li X, Li L, Zhang J, Zhang X. Enhancement of the maximum energy product of a-Fe/Nd2Fe14B nanocomposite magnets by interfacial modification. J Appl Phys 2006;99(12):126103. link1

[53] Li W, Li L, Li X, Sun H, Zhang X. Enhanced coercivity in a-(Fe,Co)/(Nd,Pr)2Fe14B nanocomposite magnets via interfacial modification. J Phys D Appl Phys 2008;41(15):155003. link1

[54] Zhang Y, Li W, Li H, Zhang X. Coercivity mechanism of a-Fe/Nd2Fe14B nocomposite magnets with an intergranular amorphous phase. J Phys D Appl Phys 2014;47(1):015002. link1

[55] Li H, Lou L, Hou F, Guo D, Li W, Li X, et al. Simultaneously increasing the magnetization and coercivity of bulk nanocomposite magnets via severe plastic deformation. Appl Phys Lett 2013;103(14):142406. link1

[56] Rong CB, Wang D, Nguyen VV, Daniil M, Willard MA, Zhang Y, et al. Effect of selective Co addition on magnetic properties of Nd2(FeCo)14B/a–Fe nanocomposite magnets. J Phys D Appl Phys 2013;46(4):045001. link1

[57] Yue M, Niu PL, Li YL, Zhang DT, Liu WQ, Zhang JX, et al. Structure and magnetic properties of bulk isotropic and anisotropic Nd2Fe14B/a-Fe nanocomposite permanent magnets with different a-Fe contents. J Appl Phys 2008;103 (7):07E101. link1

[58] Roozeboom F, Dirne FWA. Rapid thermal annealing of amorphous and nanocrystalline soft-magnetic alloys in a static magnetic field. J Appl Phys 1995;77(10):5293–7. link1

[59] Yu M, Liu Y, Liou SH, Sellmyer DJ. Nanostructured NdFeB films processed by rapid thermal annealing. J Appl Phys 1998;83(11):6611–3. link1

[60] Jin ZQ, Liu JP. Rapid thermal processing of magnetic materials. J Phys D Appl Phys 2006;39(14):R227–44. link1

[61] Wu YQ, Ping DH, Murty BS, Kanekiyo H, Hirosawa S, Hono K. Influence of heating rate on the microstructure and magnetic properties of Fe3B/Nd2Fe14B nanocomposite magnets. Scr Mater 2001;45(3):355–62. link1

[62] Murillo N, González J, González JM, de Julián C, Cebollada F. Magnetic hardening of melt-spun 2:14:1-based materials by high heating rate and short time crystallization treatments. J Mater Res 1995;10(2):292–6. link1

[63] Fang JS, Chin TS, Chen SK. Nanocrystalline Nd6Fe88-xMxB6 (M = Ti or V) magnets by rapid thermal annealing. IEEE Trans Magn 1996;32(5):4401–3. link1

[64] Gao Y, Zhang S, Liu B. Crystallization behavior of melt-spun Nd7Fe86Nb1B6 ribbons under different heating rates. J Magn Magn Mater 2000;208(3):158–62. link1

[65] Kojima A, Makino A, Inoue A. Rapid-annealing effect on the microstructure and magnetic properties of the Fe-rich nanocomposite magnets. J Appl Phys 2000;87(9):6576–8. link1

[66] Jiang H, O’Shea MJ. The influence of anneal time on exchange-coupling in Nd2Fe14B/a-Fe films. IEEE Trans Magn 2001;37:2579–81. link1

[67] Chu KT, Jin ZQ, Chakka VM, Liu JP. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites. J Phys D Appl Phys 2005;38 (22):4009–14. link1

[68] Suzuki K, Cadogan JM, Uehara M, Hirosawa S, Kanekiyo H. Effect of Cr content on decomposition behaviour of amorphous Nd5Fe74Cr3B18. Scr Mater 2000;42 (5):487–92. link1

[69] Suzuki K, Cadogan JM, Uehara M, Hirosawa S, Kanekiyo H. Formation and decomposition of Fe3B/Nd2Fe14B nanocomposite structure in Fe–Nd–B–Cr melt-spun ribbons under isothermal annealing. J Appl Phys 1999;85 (8):5914–6. link1

[70] Bernardi J, Soto GF, Fidler J, David S, Givord D. Influence of microstructure on magnetic properties of nanocomposite RE5.5(Fe,Cr,M)76.5B18 (RE = Nd, Tb; Cr 3 at%; M = Co, Si) magnetic materials. J Appl Phys 1999;85(8):5905–7. link1

[71] Bernardi J, Schrefl T, Fidler J, Rijks T, de Kort K, Archambault V, et al. Preparation, magnetic properties and microstructure of lean rare-earth permanent magnetic materials. J Magn Magn Mater 2000;219(2):186–98. link1

[72] Jin ZQ, Cui BZ, Liu JP, Ding Y, Wang ZL, Thadhani NN. Controlling the crystallization and magnetic properties of melt-spun Pr2Fe14B/a-Fe nanocomposites by Joule heating. Appl Phys Lett 2004;84(22):4382–4. link1

[73] Tian H, Zhang Y, Han J, Xu Z, Zhang X, Liu S, et al. Synergetic crystallization in a Nd2Fe14B/a–Fe nanocomposite under electron beam exposure conditions. Nanoscale 2016;8(42):18221–7. link1

[74] Dang EKF, Gooding RJ. Theory of the effects of rapid thermal annealing on thin- film crystallization. Phys Rev Lett 1995;74(19):3848–51. link1

Related Research