Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 12 doi: 10.1016/j.eng.2019.12.019

Deciphering the Origins of P1-Induced Power Losses in Cu(Inx,Ga1–x)Se2 (CIGS) Modules Through Hyperspectral Luminescence

a NICE Solar Energy GmbH, Schwaebisch Hall 74523, Germany
b Photon Etc. Inc., Montréal, QC H2S 2X3, Canada
c Institute of Materials for Electronics and Energy Technology (i-MEET), Department for Material Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
91058, Germany
d Helmholtz Institute Erlangen-Nürnberg for Renewable Energy Production, Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen 91058, Germany

Received: 2019-09-10 Revised: 2019-11-10 Accepted: 2019-12-03 Available online: 2020-07-04

Next Previous

Abstract

In this report, we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2 (CIGS) modules. In this way, we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished. Specifically, by analyzing the standard P1 patterning line ablated before the CIGS deposition, we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath. We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope (SEM) cross-section, where a reduction of the photoemission cannot be explained by a thickness variation. We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS. We then document, for the first time, the existence of a short-range damaged area, which is independent of the application of an optical aperture on the laser path. Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Yoshida S. Solar frontier achieves world record thin-film solar cell efficiency of 22.9%. Sol Front News 2017;12:2–3. link1

[ 2 ] Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Solar cell efficiency tables (version 54). Prog Photovoltaics Res Appl 2019;27:565–75. link1

[ 3 ] Yoshida, S. Solar frontier achieves world record thin-film solar cell efficiency of 23.35% [Internet]. Tokyo: Solar Frontier; 2019 Jan 17 [cited 2019 Jun 11]. Available from: https://www.solar-frontier.com/eng/news/2019/0117_press. html.

[ 4 ] Bermudez V, Perez-Rodriguez A. Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nat Energy 2018;3:466–75. link1

[ 5 ] Hutchins, M. NICE Solar Energy sets new world record for CIGS efficiency [Internet]. Berlin: pv magazine; 2019 Dec 4 [cited 2019 Jun 11]. Available from: https://www.pv-magazine.com/2019/12/04/nice-solar-energy-sets-new-worldrecord-for-cigs-efficiency/.

[ 6 ] Britt J. Photovoltaic manufacturing cost and throughput improvements for thin film CIGS-based modules. Final technical report. Golden; National Renewable Energy Laboratory; 2002 Apr. Report No.: NREL/SR-520-32072.

[ 7 ] Lee SW, Lee YJ, Lee YH, Chung JK, Kim DJ. A new laser patterning technology for low cost poly–Si thin film solar cells. In: Proceedings of SPIE Solar Energy + Technology II; 2010 Aug 1–4; San Diego, CA, USA; 2010.

[ 8 ] Crozier ML, Brunton AN, Abbas A, Bowers JW, Kaminski PM, Walls JM, et al. One step thin-film PV interconnection process using laser and inkjet. In: Proceedings of the 39th the IEEE Photovoltaic Specialists Conference; 2013 Jun; Tampa, FL, USA. Hoboken: Wiley; 2013; p. 16–21.

[ 9 ] Fields JD, Pach G, Horowitz KAW, Stockert TR, Woodhouse M, van Hest MFAM. Printed interconnects for photovoltaic modules. Sol Energy Mater Sol Cells 2017;159:536–45. link1

[10] Wagner M, Würz R, Kessler F. Post-monolithic interconnection of CIGS solar cells. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference; 2009 Sep 21–25; Hamburg, Germany; 2009.

[11] Pernet P, Goetz M, Niquille X, Fischer X, Shah A. Front contact and series connection problems of a-SI:H solar cells on polymer film substrates. In: Proceedings of 2nd World Conference Photovoltaic Energy Conversion; 1998 Jul 6–10; Vienna, Switzerland. Piscataway: IEEE; 1998. p. 976–9.

[12] Scheer R, Schock H. Chalcogenide photovoltaics. Berlin: Wiley-VCH; 2011. link1

[13] Schultz C, Basulto GAF, Ring S, Wolf C, Schlatmann R, Stegemann B. Revealing and identifying laser-induced damages in CIGSe solar cells by photoluminescence spectroscopy. J Photovoltaics 2017;7(5):1442–9. link1

[14] Schultz C, Schuele M, Stelmaszczyk K, Weizman M, Gref O, Friedrich F, et al. Laser-induced local phase transformation of CIGSe for monolithic serial interconnection: analysis of the material properties. Sol Energy Mater Sol Cells 2016;157:636–43. link1

[15] Lany S, Zunger A. Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe–VCu) vacancy complex. J Appl Phys 2006;100:113725. link1

[16] Tran TMH, Pieters BE, Ulbrich C, Gerber A, Kirchartz T, Rau U. Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. Thin Solid Films 2013;535:307–10. link1

[17] Marcet S, Verhaegen M, Blais-Ouellette S, Martel R. Raman spectroscopy hyperspectral imager based on Bragg tunable filters. In: Proceedings of SPIE— The International Society for Optical Engineering; 2012 Feb 2–6; San Francisco, CA, USA. Bellingham:SPIE; 2012.

[18] Glebov AL, Mokhun O, Rapaport A, Vergnole S, Smirnov V, Glebov LB. Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Micro-Optics 2012;2012(8428): 84280C. link1

[19] Schüle M, Schultz C, Juzumas V, Stelmaszczyk K, Weizman M, Wolf C, et al. Laser patterning of CIGSe solar cells using nano- and picosecond pulsespossibilities and challenges. In: Proceedings of the 28th European Photovoltaic Conference and Exhibition; 2013 Oct 1–3; Paris, France; 2013.

[20] Westin PO, Wätjen JT, Zimmermann U, Edoff M. Microanalysis of laser microwelded interconnections in CIGS PV modules. Sol Energy Mater Sol Cells 2012;98:172–8. link1

[21] Heise G, Domke M, Konrad J, Pavic F, Schmidt M, Vogt H, et al. Monolithical serial interconnects of large cis solar cells with picosecond laser pulses. Phys Procedia 2011;12:149–55. link1

[22] Brown G, Faifer V, Pudov A, Anikeev S, Bykov E, Contreras M, et al. Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current. Appl Phys Lett 2010;96:30–2. link1

[23] Delamarre A, Ory D, Paire M, Lincot D, Guillemoles JF, Lombez L. Evaluation of micrometer scale lateral fluctuations of transport properties in CIGS solar cells. In: Proceedings of the 2013 Physics, Simulation, Photonic Engineering Photovolt Devices II; 2013 Mar 25; San Francisco, CA, USA; 2013.

[24] Schultz C, Schule M, Stelmaszczyk K, Weizman M, Gref O, Friedrich F, et al. Controlling the thermal impact of ns laser pulses for the preparation of the P2 interconnect by local phase transformation in CIGSe. In: Proceedings of the 2015 IEEE 42nd Photovolt Specialist Conference PVSC; 2015 Jun 14–19; New Orleans, LA, USA. New York: IEEE; 2015. p. 13–6.

[25] Ruckh M, Kessler J, Oberacker TA, Schock HW. Thermal decomposition of ternary chalcopyrite thin films. Jpn J Appl Phys 1993;32:65–7. link1

[26] Hermann J, Benfarah M, Bruneau S, Axente E, Coustillier G, Itina T, et al. Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J Phys D Appl Phys 2006;39:453–60. link1

[27] Parravicini J, Acciarri M, Murabito M, Donne AL, Gasparotto A, Binetti S. Indepth photoluminescence spectra of pure CIGS thin films. Appl Opt 2018;57:1849–56. link1

Related Research