Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 9 doi: 10.1016/j.eng.2020.01.013

Construction of an Unusual Two-Dimensional Layered Structure for Fused-Ring Energetic Materials with High Energy and Good Stability

a Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
b Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

Received: 2019-09-28 Revised: 2019-11-29 Accepted: 2020-01-08 Available online: 2020-06-10

Next Previous

Abstract

The creation of high-performance energetic materials with good mechanical sensitivities has been a great challenge over the past decades, since such materials have huge amounts of energy and are thus essentially unstable. Here, we report on a promising fused-ring energetic material with an unusual twodimensional (2D) structure, 4-nitro-7-azido-pyrazol-[3,4-d]-1,2,3 triazine-2-oxide (NAPTO), whose unique 2D structure has been confirmed by single-crystal X-ray diffraction. Experimental studies show that this novel energetic compound has remarkably high energy (detonation velocity D = 9.12 km∙s−1; detonation pressure P = 35.1 GPa), excellent sensitivities toward external stimuli (impact sensitivity IS = 18 J; friction sensitivity FS = 325 N; electrostatic discharge sensitivity EDS = 0.32 J) and a high thermal decomposition temperature (203.2 °C), thus possessing the dual advantages of high energy and low mechanical sensitivities. To our knowledge, NAPTO is the first fused-ring energetic material with 2D layered crystal stacking. The stabilization mechanism toward external stimuli were investigated using molecular simulations, and the theoretical calculation results demonstrate that the ultraflat 2D layered structure can buffer external mechanical stimuli more effectively than other structures by converting the mechanical energy acting on the material into layer sliding and compression. Our study reveals the great promise of the fused-ring 2D layered structure for creating advanced energetic materials.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Klapötke TM. Structure and bonding: high energy density materials. Berlin: Springer; 2007. p. 36–7.

[ 2 ] Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. p. 1–2.

[ 3 ] Eiland PF, Pepinsky R. The crystal structure of cyclotetramethylene tetranitramine. Z Krist-Cryst Mater 1954;106(16):273–98. link1

[ 4 ] Choi CS, Prince E. The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 1972;28(9):2857–62. link1

[ 5 ] Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM. CL- 20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech 1997;22(5):249–55. link1

[ 6 ] Zhang MX, Eaton PE, Gilardi R. Hepta- and octanitrocubanes. Angew Chem Int Ed 2000;39(2):401–4. link1

[ 7 ] Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R. Single-bonded cubic form of nitrogen. Nat Mater 2004;3(8):558–63. link1

[ 8 ] Zhurova EA, Stash AI, Tsirelson VG, Zhurov VV, Bartashevich EV, Potemkin VA, et al. Atoms-in-molecules study of intra- and intermolecular bonding in the pentaerythritol tetranitrate crystal. J Am Chem Soc 2006;128(45):14728–34. link1

[ 9 ] Zhurova EA, Zhurov VV, Pinkerton AA. Structure and bonding in b-HMXcharacterization of a trans-annular NN interaction. J Am Chem Soc 2007;129 (45):13887–93. link1

[10] Joo YH, Shreeve JM. High-density energetic mono- or bis(oxy)-5- nitroiminotetrazoles. Angew Chem Int Ed 2010;49(40):7320–3. link1

[11] Klapötke TM, Martin FA, Stierstorfer J. C2N14: an energetic and highly sensitive binary azidotetrazole. Angew Chem Int Ed 2011;50(18):4227–9. link1

[12] Raza Z, Pickard CJ, Pinilla C, Saitta AM. High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys Rev Lett. 2013;111 (23):235501.

[13] Fischer D, Klapotke TM, Stierstorfer J. 1,5-Di(nitramino)tetrazole: high sensitivity and superior explosive performance. Angew Chem Int Ed 2015;54 (35):10299–302. link1

[14] Bennion JC, Chowdhury N, Kampf JW, Matzger AJ. Hydrogen peroxide solvates of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Angew Chem Int Ed 2016;55(42):13118–21. link1

[15] Xia K, Sun J, Pickard CJ, Klug DD, Needs RJ. Ground state structure of high-energy-density polymeric carbon monoxide. Phys Rev B 2017;95: 144102.

[16] Yu Q, Yin P, Zhang JH, He CL, Imler GH, Parrish DA, et al. Pushing the limits of oxygen balance in 1,3,4-oxadiazoles. J Am Chem Soc 2017;139(26):8816–9. link1

[17] Zhang WQ, Zhang JH, Deng MC, Qi XJ, Nie FD, Zhang QH. A promising highenergy-density material. Nat Commun 2017;8:1–7. link1

[18] Zhang C, Sun CG, Hu BC, Yu CM, Lu M. Synthesis and characterization of the pentazolate anion cyclo-N5 - in (N5)6(H3O)3(NH4)4Cl. Science 2017;355 (6323):374–6. link1

[19] Xu YG, Wang Q, Shen C, Lin QH, Wang PC, Lu M. A series of energetic metal pentazolate hydrates. Nature 2017;549(7670):78–81. link1

[20] Yang C, Zhang C, Zheng ZS, Jiang C, Luo J, Du Y, et al. Synthesis and characterization of cyclo-pentazolate salts of NH4 + , NH3OH+ , N2H5 + , C(NH2)3 + , and N(CH3)4 + . J Am Chem Soc 2018;140(48):16488–94. link1

[21] Zhang CY. Origins of the energy and safety of energetic materials and of the energy & safety contradiction. Propellants Explos Pyrotech 2018;43(9):855–6. link1

[22] Wang Y, Liu YJ, Song SW, Yang ZJ, Qi XJ, Wang KC, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 2018;9(2444):1–11. link1

[23] Thottempudi V, Forohor F, Parrish DA, Shreeve JM. Tris(triazolo)benzene and its derivatives: high-density energetic materials. Angew Chem Int Ed 2012;51 (39):9881–5. link1

[24] Chavez DE, Bottaro JC, Petrie M, Parrish DA. Synthesis and thermal behavior of a fused, tricyclic 1,2,3,4-tetrazine ring system. Angew Chem Int Ed 2015;54 (44):12973–5. link1

[25] Klenov MS, Guskov AA, Anikin OV, Churakov AM, Strelenko YA, Fedyanin IV, et al. Synthesis of tetrazino-tetrazine 1,3,6,8-tetraoxide (TTTO). Angew Chem Int Ed 2016;55(38):11472–5. link1

[26] Yin P, Zhang JH, Mitchell LA, Parrish DA, Shreeve JM. 3,6-Dinitropyrazolo[4,3-c] pyrazole-based multipurpose energetic materials through versatile Nfunctionalization strategies. Angew Chem Int Ed 2016;55(41):12895–7. link1

[27] Thottempudi V, Yin P, Zhang JH, Parrish DA, Shreeve JM. 1,2,3-triazolo[4,5,- e]furazano[3,4,-b]pyrazine 6-oxide—a fused heterocycle with a roving hydrogen forms a new class of insensitive energetic materials. Chemistry 2014;20(2):542–8. link1

[28] Schulze MC, Scott BL, Chavez DE. A high density pyrazolo-triazine explosive (PTX). J Mater Chem A Mater Energy Sustain 2015;3(35):17963–5. link1

[29] Piercey DG, Chavez DE, Scott BL, Imler GH, Parrish DA. An energetic triazolo- 1,2,4-triazine and its N-oxide. Angew Chem Int Ed 2016;55(49):15315–8. link1

[30] Tang YX, Kumar D, Shreeve JM. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4-tetrazine. J Am Chem Soc 2017;139(39):13684–7. link1

[31] Chavez DE, Parrish DA, Mitchell L, Imler GH. Azido and tetrazolo 1,2,4,5- tetrazine N-oxide. Angew Chem Int Ed 2017;56(13):3575–8. link1

[32] Singer IL, Pollock HM. Fundamentals of friction: macroscopic and microscopic processes. Braunlage: Springer Science+Business Media Dordrecht; 1991. p. 238–41.

[33] Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM. Superlubricity of graphite. Phys Rev Lett 2004;92(12):126101.

[34] Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, et al. Frictional characteristics of atomically thin sheets. Science 2010;328(5974):76–80. link1

[35] Liu Z, Yang JR, Grey F, Liu JZ, Liu YL, Wang YB, et al. Observation of microscale superlubricity in graphite. Phys Rev Lett 2012;108(20):205503. link1

[36] Koren E, Lortscher E, Rawlings C, Knoll AW, Duerig U. Adhesion and friction in mesoscopic graphite contacts. Science 2015;348(6235):679–83. link1

[37] Zhang C. Investigation of the slide of the single layer of the 1,3,5-triamino- 2,4,6-trinitrobenzene crystal: sliding potential and orientation. J Phys Chem B 2007;111(51):14295–8. link1

[38] Zhang C. Computational investigation on the desensitizing mechanism of graphite in explosives versus mechanical stimuli: compression and glide. J Phys Chem B 2007;111(22):6208–13. link1

[39] Zhang CY, Wang XC, Huang H. p-stacked interactions in explosive crystals: buffers against external mechanical stimuli. J Am Chem Soc 2008;130 (26):8359–65. link1

[40] Ma Y, Zhang AB, Zhang CH, Jiang DJ, Zhu YQ, Zhang CY. Crystal packing of lowsensitivity and high-energy explosives. Cryst Growth Des 2014;14 (9):4703–13. link1

[41] Zhang CY, Jiao FB, Li HZ. Crystal engineering for creating low sensitivity and highly energetic materials. Cryst Growth Des 2018;18(10):5713–26. link1

[42] Dong H. The development and countermeasure of high energy density materials. Chin J Energy Mater 2004;12:1–12. link1

[43] Deng MC, Feng YA, Zhang WQ, Qi XJ, Zhang QH. A green metal-free fused-ring initiating substance. Nat Commun 2019;10(1):1–8. link1

[44] Semeraro T, Mugnaini C, Manetti F, Pasquini S, Corelli F. Practical synthesis of novel purine analogues as Hsp90 inhibitors. Tetrahedron 2008;64 (49):11249–55. link1

[45] Squarcialupi L, Falsini M, Catarzi D, Varano F, Betti M, Varani K, et al. Exploring the 2- and 5-positions of the pyrazolo[4,3-d]pyrimidin-7-amino scaffold to target human A1 and A2A adenosine receptors. Bioorg Med Chem 2016;24 (12):2794–808. link1

[46] Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 1968;48(1):23–35. link1

[47] Kamlet MJ, Ablard JE. Chemistry of detonations. II. Buffered equilibria. J Chem Phys 1968;48(1):36–42. link1

[48] Kamlet MJ, Dickinson C. Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J Chem Phys 1968;48 (1):43–50. link1

[49] Fischer D, Klapotke TM, Stierstorfer J. Potassium 1,10 -dinitramino-5,50 - bistetrazolate: a primary explosive with fast detonation and high initiation power. Angew Chem Int Ed 2014;53(31):8172–5. link1

Related Research