Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 5 doi: 10.1016/j.eng.2020.03.012

Engineering Disease Resistance in Crop Plants: Callosic Papillae as Potential Targets

School of Agriculture, The University of Adelaide, Glen Osmond, SA 5066, Australia

Available online: 2020-04-01

Next Previous

Figures

Fig. 1

Fig. 2

References

[ 1 ] Bohlmann H, Clausen S, Behnke S, Giese H, Hiller C, Reimann-Philipp U, et al. Leaf–specific thionins of barley—a novel class of cell wall proteins toxic to plant–pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J 1988;7:1559–65. link1

[ 2 ] Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, et al. Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 1993;75(8):687–706. link1

[ 3 ] Roulin S, Xu P, Brown AHD, Fincher GB. Expression of specific (1?3)-bglucanase genes in leaves of near-isogenic resistant and susceptible barley lines infected with the leaf scald fungus (Rhynchosporium secalis). Physiol Mol Plant Pathol 1997;50(4):245–61. link1

[ 4 ] Kasprzewska A. Plant chitinases—regulation and function. Cell Mol Biol Lett 2003;8(3):809–24. link1

[ 5 ] Moosa A, Farzand A, Sahi ST, Khan SA. Transgenic expression of antifungal pathogenesis-related proteins against phytopathogenic fungi—15 years of success. Isr J Plant Sci 2018;65(1–2):38–54. link1

[ 6 ] Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 2018;212–213:29–37. link1

[ 7 ] Kaku H, Shibuya N, Xu P, Aryan AP, Fincher GB. N-acetylchitooligosaccharides elicit expression of a single (1?3)-b-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol Plant 1997;100(1):111–8. link1

[ 8 ] Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 2004;9 (4):203–9. link1

[ 9 ] Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, et al. Non-branched b-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J 2017;93(1):34–49. link1

[10] Bacic A, Fincher GB, Stone BA, editors. Chemistry, biochemistry, and biology of (1?3)-b-glucans and related polysaccharides. Philadelphia: Elsevier; 2009. link1

[11] Brownfield L, Doblin M, Fincher GB, Bacic A. Biochemical and molecular properties of biosynthetic enzymes for (1,3)-b-glucans in embryophytes, chlorophytes and rhodophytes. In: Bacic A, Fincher GB, Stone BA, editors. Chemistry, biochemistry, and biology of (1?3)-b-glucans and related polysaccharides. Philadelphia: Elsevier; 2009. p. 283–326. link1

[12] Latgé JP. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 2007;66(2):279–90. link1

[13] Cui X, Shin H, Song C, Laosinchai W, Amano Y, Brown RM Jr. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta 2014;213:223–30. link1

[14] Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42(D1):D490–5. link1

[15] Delmer DP, Solomon M, Read SM. Direct photolabeling with [32P]UDP-glucose for identification of a subunit of cotton fiber callose synthase. Plant Physiol 1991;95(2):556–63. link1

[16] Li J, Burton RA, Harvey AJ, Hrmova M, Wardak AZ, Stone BA, et al. Biochemical evidence linking a putative callose synthase gene with (1?3)-b-D-glucan biosynthesis in barley. Plant Mol Biol 2003;53(1–2): 213–25. link1

[17] Bulone V, Fincher GB, Stone BA. In vitro synthesis of a microfibrillar (1?3)-bglucan by a ryegrass (Lolium multiflorum) endosperm (1?3)-b-glucan synthase enriched by product entrapment. Plant J 1995;8(2):213–25. link1

[18] Verma DPS, Hong Z. Plant callose synthase complexes. Plant Mol Biol 2001;47 (6):693–701. link1

[19] Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, et al. An Arabidopsis thaliana callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 2003;15(11):2503–13. link1

[20] Töller A, Brownfield L, Neu C, Twell D, Schulze-Lefert P. Dual function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male gametophyte development and plant growth. Plant J 2008;54(5):911–23. link1

[21] Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. Systemic acquired resistance. Plant Cell 1996;8(10):1809–19. link1

[22] Stone BA, Evans NA, Bonig I, Clarke AE. The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 1985;122:191–5. link1

[23] Chowdhury J, Schober MS, Shirley NJ, Singh RR, Jacobs AK, Douchkov D, et al. Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei. New Phytol 2016;212 (2):434–43. link1

[24] Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 2003;301(5635):969–72. link1

[25] Smart MG, Aist JR, Israel HW. Structure and function of wall appositions. 1. General histochemistry of papillae in barley coleoptiles attacked by Erysiphe graminis f. sp. hordei. Can J Bot 1986;64(4):793–801. link1

[26] Chowdhury J, Henderson M, Schweizer P, Burton RA, Fincher GB, Little A. Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei. New Phytol 2014;204(3):650–60. link1

[27] Chowdhury J, Lück S, Rajaraman J, Douchkov D, Shirley NJ, Schwerdt JG, et al. Altered expression of genes implicated in xylan biosynthesis affects penetration resistance against powdery mildew. Front Plant Sci 2017;8: 445. link1

Related Research