Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 6 doi: 10.1016/j.eng.2020.03.019

Bioprinting of Small-Diameter Blood Vessels

Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA

# These authors contributed equally to this work.

Received: 2019-08-03 Revised: 2020-02-15 Accepted: 2020-03-06 Available online: 2020-09-30

Next Previous

Abstract

There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening. However, the availability of a true bioengineered vascular graft remains limited. Three-dimensional (3D) bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.
In this review, we summarize the basic biology of different blood vessels, as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs, with a focus on small-diameter blood vessels.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Brewster L, Brey EM, Greisler HP. Blood vessels. In: Lanza R, Langer R, Vacanti J, editors. Principles of tissue engineering. Boston: Academic Press; 2014. p. 793–812. link1

[ 2 ] Chang WG, Niklason LE. A short discourse on vascular tissue engineering. NPJ Regen Med 2017;2:7. link1

[ 3 ] Ardalani H, Assadi AH, Murphy WL. Structure, function, and development of blood vessels: lessons for tissue engineering. In: Cai W, editor. Engineering in translational medicine. London: Springer; 2014. p. 155–82. link1

[ 4 ] Tucker WD, Arora Y. Anatomy, blood vessels [Internet]. Treasure Island: StatPearls Publishing; c2020 [updated 2020 Aug 10; cited 2020 Aug 21]. Available from: https://www.statpearls.com/kb/viewarticle/32153/. link1

[ 5 ] Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini AJB. Multiscale bioprinting of vascularized models. Biomaterials 2019;198: 204–16. link1

[ 6 ] Hurst JW, Logue RB, Schlant RC, Wenger NK, editors. The heart: arteries and veins. New York: McGraw-Hill; 1978. link1

[ 7 ] SEER training modules—classification & structure of blood vessels [Internet]. National Cancer Institute at the US National Institutes of Health; [cited 2020 Aug 21]. Available from: https://training.seer.cancer.gov/anatomy/cardiovascular/ blood/classification.html. link1

[ 8 ] Hammes M. Hemodynamic and biologic determinates of arteriovenous fistula outcomes in renal failure patients. BioMed Res Int 2015;2015:171674. link1

[ 9 ] Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 2005;7(4):452–64. link1

[10] Schöneberg J, De Lorenzi F, Theek B, Blaeser A, Rommel D, Kuehne AJ, et al. Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique. Sci Rep 2018;8:10430. link1

[11] Burton AC. Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 1954;34(4):619–42. link1

[12] Nemeno-Guanzon JG, Lee S, Berg JR, Jo YH, Yeo JE, Nam BM, et al. Trends in tissue engineering for blood vessels. BioMed Res Int 2012;2012:956345. link1

[13] Post A, Wang E, Cosgriff-Hernandez E. A review of integrin-mediated endothelial cell phenotype in the design of cardiovascular devices. Ann Biomed Eng 2019;47:366–80. link1

[14] Li M, Qian M, Kyler K, Xu J. Endothelial-vascular smooth muscle cells interactions in atherosclerosis. Front Cardiovasc Med 2018;5:151. link1

[15] Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2012;2(1):a006429. link1

[16] Hwa C, Sebastian A, Aird WC. Endothelial biomedicine: its status as an interdisciplinary field, its progress as a basic science, and its translational bench-to-bedside gap. Endothelium 2005;12(3):139–51. link1

[17] Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol 2013;50(1):7–22. link1

[18] Steucke KE, Tracy PV, Hald ES, Hall JL, Alford PW. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties. J Biomech 2015;48(12):3044–51. link1

[19] Mathers CD, Loncar DJP. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3(11):e442. link1

[20] Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev 2015;22(1):68–100. link1

[21] Taylor LM, Edwards JM, Brant B, Phinney ES, Porter JM. Autogenous reversed vein bypass for lower extremity ischemia in patients with absent or inadequate greater saphenous vein. Am J Surg 1987;153(5):505–10. link1

[22] Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg 2013;257(5):824–33. link1

[23] Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 2005;26(15):2527–36. link1

[24] Lord MS, Yu W, Cheng B, Simmons A, Poole-Warren L, Whitelock JM. The modulation of platelet and endothelial cell adhesion to vascular graft materials by perlecan. Biomaterials 2009;30(28):4898–906. link1

[25] Catto V, Farè S, Freddi G, Tanzi MC. Vascular tissue engineering: recent advances in small diameter blood vessel regeneration. Vasc Med 2014;2014:923030.

[26] Bordenave L, Menu P, Baquey C. Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev Med Devices 2008;5 (3):337–47. link1

[27] Dean EW, Udelsman B, Breuer CK. Current advances in the translation of vascular tissue engineering to the treatment of pediatric congenital heart disease. Yale J Biol Med 2012;85(2):229–38. link1

[28] Tara S, Rocco KA, Hibino N, Sugiura T, Kurobe H, Breuer CK, et al. Vessel bioengineering. Circ J 2013;78(1):12–9. link1

[29] Han X, Bibb R, Harris RJB. Engineering design of artificial vascular junctions for 3D printing. Biofabrication 2016;8(2):025018.

[30] Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardiothorac Surg 2014;46 (5):767–78.

[31] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773–85. link1

[32] Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 2016;14:271. link1

[33] Dimitrievska S, Niklason LE. Historical perspective and future direction of blood vessel developments. Cold Spring Harb Perspect Med 2017;8(2): a025742. link1

[34] Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017;51:1–20. link1

[35] Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y. Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 2015;112 (5):1047–55. link1

[36] Yu Y, Zhang Y, Martin JA, Ozbolat IT. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 2013;135(9):091011. link1

[37] Zhang Y, Yu Y, Ozbolat IT. Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med 2013;4(2):020902. link1

[38] Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication 2015;7 (4):045011. link1

[39] Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, et al. 3D bioprinting: from benches to translational applications. Small 2019;15 (23):1805510. link1

[40] Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D’Amico F, et al. Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci 2018;3(3):203–13. link1

[41] Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis 2017;4(4):185–95. link1

[42] Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ. Bioprinting technology and its applications. Eur J Cardiothorac Surg 2014;46(3):342–8. link1

[43] Guillotin B, Ali M, Ducom A, Catros S, Keriquel V, Souquet A, et al. Laserassisted bioprinting for tissue engineering. In: Forgacs G, Sun W, editors. Biofabrication. Amsterdam: Elsevier Inc.; 2013. p. 95–118. link1

[44] Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJA, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 2013;25(36):5011–28. link1

[45] Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015;7(4):045009. link1

[46] Ma X, Qu X, Zhu W, Li YS, Yuan S, Zhang H, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 2016;113:2206–11. link1

[47] Kirchmajer DM, Gorkin R, Panhuis MIH. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J Mater Chem B 2015;3(20):4105–17. link1

[48] Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006;1(9):910–7. link1

[49] Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials 2005;26(1):93–9. link1

[50] Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 2016;21(6):685. link1

[51] Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, RigatBrugarolas LG, Nallapatti U, et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 2016;16(12):2287–94. link1

[52] Raman R, Bashir R. Stereolithographic 3D bioprinting for biomedical applications. In: Essentials of 3D biofabrication and translation. Amsterdam: Elsevier; 2015. p. 89–121. link1

[53] LaValley DJ, Reinhart-King C. Matrix stiffening in the formation of blood vessels. Adv Regener Bio 2014;1(1):25247. link1

[54] Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 2005;97(11):1093–107. link1

[55] Kniazeva E, Putnam AJ. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 2009;297(1):C179–87. link1

[56] Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev 2009;89(3):957–89. link1

[57] Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011;3(2):a004911. link1

[58] Lacolley P, Regnault V, Segers P, Laurent S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev 2017;97(4):1555–617. link1

[59] Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D. Extra-cellular matrix in vascular networks. Cell Prolif 2004;37(3):207–20. link1

[60] Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 2005;85(3):979–1000. link1

[61] Neve A, Cantatore FP, Maruotti N, Corrado A, Ribatti D. Extracellular matrix modulates angiogenesis in physiological and pathological conditions. BioMed Res Int 2014;2014:756078. link1

[62] Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting for vascularized tissue fabrication. Ann Biomed Eng 2017;45(1):132–47. link1

[63] Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 2016;44 (6):2090–102. link1

[64] Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016;34(4):422–34. link1

[65] Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 2015;27(9):1607–14. link1

[66] Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A novel strategy for creating tissueengineered biomimetic blood vessels using 3D bioprinting technology. Materials 2018;11(9):1581. link1

[67] Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 2015;227 (6):746–56. link1

[68] Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 2010;16(8):2675–85. link1

[69] Liu J, Hwang HH, Wang P, Whang G, Chen S. Direct 3D-printing of cell-laden constructs in microfluidic architectures. Lab Chip 2016;16 (8):1430–8. link1

[70] Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS. Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 2017;8:371. link1

[71] Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials 2009;30(20):3371–7. link1

[72] Seliktar D, Black RA, Vito RP, Nerem RM. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 2000;28(4):351–62. link1

[73] Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials 2005;26(35):7410–7. link1

[74] Boccafoschi F, Rajan N, Habermehl J, Mantovani D. Preparation and characterization of a scaffold for vascular tissue engineering by directassembling of collagen and cells in a cylindrical geometry. Macromol Biosci 2007;7(5):719–26. link1

[75] Amadori L, Rajan N, Vesentini S, Mantovani D. Atomic force and confocal microscopic studies of collagen-cell-based scaffolds for vascular tissue engineering. Adv Mater Res 2007;15–7:83–8. link1

[76] Schutte SC, Chen Z, Brockbank KGM, Nerem RM. Cyclic strain improves strength and function of a collagen-based tissue-engineered vascular media. Tissue Eng Part A 2010;16(10):3149–57. link1

[77] Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 2016;113 (12):3179–84. link1

[78] Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked a-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater 2005;1 (2):155–64. link1

[79] McKenna KA, Hinds MT, Sarao RC, Wu PC, Maslen CL, Glanville RW, et al. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater 2012;8 (1):225–33. link1

[80] Çelebi B, Cloutier M, Balloni R, Mantovani D, Bandiera A. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation. Macromol Biosci 2012;12(11):1546–54. link1

[81] Patel A, Fine B, Sandig M, Mequanint K. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 2006;71(1):40–9. link1

[82] Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol 2005;288(3):H1451–60. link1

[83] Ye Q, Zünd G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 2000;17(5):587–91. link1

[84] Yao L, Swartz DD, Gugino SF, Russell JA, Andreadis ST. Fibrin-based tissueengineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity. Tissue Eng 2005;11(7–8):991–1003. link1

[85] Swartz DD, Russell JA, Andreadis ST, Physiology C. Engineering of fibrin-based functional and implantable small-diameter blood vessels. AJP Heart Circ Physiol 2005;288(3):H1451–60. link1

[86] Zavan B, Vindigni V, Lepidi S, Iacopetti I, Avruscio G, Abatangelo G, et al. Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J 2008;22(8):2853–61. link1

[87] Li S, Nih LR, Bachman H, Fei P, Li Y, Nam E, et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat Mater 2017;16(9):953–61. link1

[88] Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 2014;14(13):2202–11. link1

[89] Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012;37(1):106–26. link1

[90] Jia J, Richards DJ, Pollard S, Tan Y, Rodriguez J, Visconti RP, et al. Engineering alginate as bioink for bioprinting. Acta Biomater 2014;10(10):4323–31. link1

[91] Vernon RB, Sage EH. Between molecules and morphology: extracellular matrix and creation of vascular form. Am J Pathol 1995;147(4):873–83. link1

[92] Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest 1992;66(5):536–47. link1

[93] Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014;79–80:3–18. link1

[94] Thottappillil N, Nair PD. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag 2015;11:79–91. link1

[95] Seifu DG, Purnama A, Mequanint K, Mantovani D. Small-diameter vascular tissue engineering. Nat Rev Cardiol 2013;10(7):410–21. link1

[96] Kim P, Yuan A, Nam KH, Jiao A, Kim DH. Fabrication of poly (ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering. Biofabrication 2014;6 (2):024112. link1

[97] Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010;31(17):4639–56. link1

[98] Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci USA 2010;107(34):15211–6. link1

[99] Conconi MT, Borgio L, Di Liddo R, Sartore L, Dalzoppo D, Amistà P, et al. Evaluation of vascular grafts based on polyvinyl alcohol cryogels. Mol Med Rep 2014;10(3):1329–34. link1

[100] Vrana NE, Liu Y, McGuinness GB, Cahill PA. Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol Symp 2008;269(1):106–10. link1

[101] Zhang YS, Khademhosseini AJS. Advances in engineering hydrogels. Science 2017;356(6337):eaaf3627. link1

[102] Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 2013;13(5):551–61. link1

[103] Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci 2019;7(3):843–55. link1

[104] Zhou M, Lee BH, Tan LP. A dual crosslinking strategy to tailor rheological properties of gelatin methacryloyl. Int J Bioprint 2017;3(2):1–8. link1

[105] Shin H, Olsen BD, Khademhosseini A. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012;33(11):3143–52. link1

[106] Gaudet ID, Shreiber DI. Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases 2012;7(1–4):25. link1

[107] Pupkaite J, Ahumada M, Mclaughlin S, Temkit M, Alaziz S, Seymour R, et al. Collagen-based photoactive agent for tissue bonding. ACS Appl Mater Interfaces 2017;9(11):9265–70. link1

[108] Ondeck MG, Engler AJ. Mechanical characterization of a dynamic and tunable methacrylated hyaluronic acid hydrogel. J Biomech Eng 2016;138(2):021003. link1

[109] Poldervaart MT, Goversen B, de Ruijter M, Abbadessa A, Melchels FP, Öner FC, et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE 2017;12(6):e0177628. link1

[110] Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016;106:58–68. link1

[111] Pan T, Song W, Cao X, Wang Y. 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 2016;32(9):889–900. link1

[112] Rich H, Odlyha M, Cheema U, Mudera V, Bozec L. Effects of photochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils. J Mater Sci Mater Med 2014;25(1):11–21. link1

[113] Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2- induced photo-crosslinking. Acta Biomater 2016;33:88–95. link1

[114] Bae HJ, Darby DO, Kimmel RM, Park HJ, Whiteside WS. Effects of transglutaminase-induced cross-linking on properties of fish gelatin– nanoclay composite film. Food Chem 2009;114(1):180–9. link1

[115] Schütz K, Placht AM, Paul B, Brüggemeier S, Gelinsky M, Lode A. Threedimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. J Tissue Eng Regener Med 2017;11(5):1574–87. link1

[116] Pi Q, Maharjan S, Yan X, Liu X, Singh B, van Genderen AM, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv Mater 2018;30(43):1706913. link1

[117] Rajaram A, Schreyer D, Chen D. Bioplotting alginate/hyaluronic acid hydrogel scaffolds with structural integrity and preserved schwann cell viability. 3D Print Addit Manuf 2014;1(4):194–203. link1

[118] Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, et al. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 2014;10(5):2269–81. link1

[119] Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 2014;10(2):630–40. link1

[120] Keating M, Lim M, Hu Q, Botvinick E. Selective stiffening of fibrin hydrogels with micron resolution via photocrosslinking. Acta Biomater 2019;87:88–96. link1

[121] Cui H, Zhu W, Holmes B, Zhang LG. Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv Sci 2016;3(8):1600058. link1

[122] Huettner N, Dargaville TR, Forget A. Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol 2018;36(4):372–83. link1

[123] Lee TT, García JR, Paez JI, Singh A, Phelps EA, Weis S, et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 2015;14(3):352–60. link1

[124] Sun J, Wei D, Yang K, Yang Y, Liu X, Fan H, et al. The development of cell-initiated degradable hydrogel based on methacrylated alginate applicable to multiple microfabrication technologies. J Mater Chem B 2017;5(40):8060–9. link1

[125] Kim S, Cui ZK, Fan J, Fartash A, Aghaloo TL, Lee M. Photocrosslinkable chitosan hydrogels functionalized with the RGD peptide and phosphoserine to enhance osteogenesis. J Mater Chem B Mater Biol Med 2016;4(31): 5289–98. link1

[126] Long J, Kim H, Kim D, Lee JB, Kim D. A biomaterial approach to cell reprogramming and differentiation. J Mater Chem B Mater Biol Med 2017;5 (13):2375–89. link1

[127] Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16(2):159–78. link1

[128] Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn E. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004;56 (4):549–80. link1

[129] Pepper M, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 1992;189(2): 824–31. link1

[130] Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. FASEB J 1997;11(1):51–9. link1

[131] Martino MM, Hubbell JA. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J 2010;24(12):4711–21. link1

[132] Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin (ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci USA 2013;110(12):4563–8. link1

[133] De Laporte L, Rice JJ, Tortelli F, Hubbell J. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PLoS ONE 2013;8 (4):e62076. link1

[134] Upton Z, Cuttle L, Noble A, Kempf M, Topping G, Malda J, et al. Vitronectin: growth factor complexes hold potential as a wound therapy approach. J Invest Dermatol 2008;128(6):1535–44. link1

[135] Liu Y, Cai S, Shu XZ, Shelby J, Prestwich GD. Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Rep Reg 2007;15(2):245–51. link1

[136] Cameron AR, Frith JE, Cooper-White JJ. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomater 2011;32 (26):5979–93. link1

[137] Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ. The effect of timedependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomater 2014;35(6):1857–68. link1

[138] McKinnon DD, Domaille DW, Cha JN, Anseth K. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv Mater 2014;26(6):865–72. link1

[139] Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, et al. Substrate stress relaxation regulates cell spreading. Nat Comms 2015;6:6365. link1

[140] Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 2016;15(3):326–34. link1

[141] Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 2013;12(5):458–65. link1

[142] Zhu W, Qu X, Zhu J, Ma XY, Patel S, Liu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 2017;124:106–15. link1

[143] Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016;76:321–43. link1

[144] Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018;132:296–332. link1

[145] Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, et al. Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules 2009;10(7):1689–96. link1

[146] Matricardi P, Pontoriero M, Coviello T, Casadei MA, Alhaique F. In situ crosslinkable novel alginate-dextran methacrylate IPN hydrogels for biomedical applications: mechanical characterization and drug delivery properties. Biomacromolecules 2008;9(7):2014–20. link1

[147] Zhang Y, Yu Y, Akkouch A, Dababneh A, Dolati F, Ozbolat IT. In vitro study of directly bioprinted perfusable vasculature conduits. Biomater Sci 2015;3 (1):134–43. link1

[148] Gao Q, He Y, Fu J, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 2015;61:203–15. link1

[149] Gao G, Kim H, Kim BS, Kong JS, Lee JY, Park BW, et al. Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triplecoaxial cell printing. Appl Phys Rev 2019;6(4):041402. link1

[150] Andrique L, Recher G, Alessandri K, Pujol N, Feyeux M, Bon P, et al. A model of guided cell self-organization for rapid and spontaneous formation of functional vessels. Sci Adv 2019;5(6):eaau6562. link1

[151] Cui H, Zhu W, Huang Y, Liu C, Yu ZX, Nowicki M, et al. In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication 2020;12(1):015004. link1

[152] Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 2008;29(2): 193–203. link1

[153] Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30(30):5910–7. link1

[154] Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of threedimensional zigzag cellular tubes. Biotechnol Bioeng 2012;109(12):3152–60. link1

[155] Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30(31):6221–7. link1

[156] Guillemot F, Souquet A, Catros S, Guillotin B. Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 2010;5(3):507–15. link1

[157] Wu PK, Ringeisen BR. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/ stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2010;2(1):014111. link1

[158] Cha C, Soman P, Zhu W, Nikkhah M, Camci-Unal G, Chen S, et al. Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomater Sci 2014;2(5):703–9. link1

[159] Han LH, Suri S, Schmidt CE, Chen S. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed Microdevices 2010;12(4):721–5. link1

[160] Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 2014;6(2):024105. link1

[161] Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014;26(19):3124–30. link1

[162] Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012;11(9):768–74. link1

[163] Mirabella T, MacArthur JW, Cheng D, Ozaki C, Woo YJ, Yang MT, et al. 3Dprinted vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 2017;1(6):0083. link1

[164] Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 2014;7(3):460–72. link1

Related Research