Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 6 doi: 10.1016/j.eng.2020.04.009

View and Comments on the Data Ecosystem: “Ocean of Data”

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA

Available online: 2020-05-13

Next Previous

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Liu ZK. Ocean of data: integrating first-principles calculations and CALPHAD modeling with machine learning. J Phase Equilibria Diffus 2018;39(5):635–49. link1

[ 2 ] Gibbs JW. The collected works of J. Willard Gibbs: vol. I. thermodynamics. New Haven: Yale University Press; 1948. link1

[ 3 ] Gibbs JW. The collected works of J. Willard Gibbs: vol. II. statistical mechanics. New Heaven: Yale University Press; 1948. link1

[ 4 ] Gibbs JW. On the equilibrium of heterogeneous substances. Am J Sci 1878;16 (3):441–58. link1

[ 5 ] Hillert M. Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis. 2nd ed. Cambridge: Cambridge University Press; 2008. link1

[ 6 ] Liu ZK, Wang Y. Computational thermodynamics of materials. Cambridge: Cambridge University Press; 2016. link1

[ 7 ] Kaufman L, Bernstein H. Computer calculation of phase diagrams with special reference to refractory metals. New York: Academic Press Inc; 1970. link1

[ 8 ] Saunders N, Miodownik AP. CALPHAD (calculation of phase diagrams): a comprehensive guide. Oxford: Pergamon; 1998. link1

[ 9 ] Lukas HL, Fries SG, Sundman B. Computational thermodynamics: the CALPHAD method. Cambridge: Cambridge University Press; 2007. link1

[10] Kaufman L. The lattice stability of metals—I. titanium and zirconium. Acta Metall 1959;7(8):575–87. link1

[11] Kaufman L. The lattice stability of the transition metal. In: Rudman PS, Stringer JS, Jaffee RI, editors. Phase stability in metals and alloys. New York: McGrawHill; 1967. p. 125–50. link1

[12] National Research Council. Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. Washington, DC: The National Academies Press; 2008. link1

[13] National Science and Technology Council. Materials Genome Initiative for global competitiveness [Internet]. Washington, DC: National Science and Technology Council; 2011 Jun 24 [cited 2017 Mar 22]. Available from: https:// www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final. pdf.

[14] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140(4A):1133–8. link1

[15] Spencer PJ. A brief history of CALPHAD. Calphad 2008;32(1):1–8. link1

[16] Hafner J, Sommer F. Ab-initio pseudopotential calculations of the structure and stability of binary alloys and intermetallic compounds. Calphad 1977;1 (4):325–40. link1

[17] Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys Rev B Condens Matter 1993;48(17):13115–8. link1

[18] Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 2008;29(13):2044–78. link1

[19] Liu ZK, Chen LQ, Raghavan P, Du Q, Sofo J, Langer SA, et al. An integrated framework for multi-scale materials simulation and design. J Comput Mater Des 2004;11(2–3):183–99. link1

[20] National Human Genome Research Institute. The Human Genome Project [Internet]. Bethesda: National Institutes of Health; [cited 2018 Jun 26]. Available from: https://www.genome.gov/10001772/all-about-the–humangenome-project-hgp/.

[21] Liu ZK, Chen LQ, Spear KE, Pollard C. An integrated education program on computational thermodynamics, kinetics, and materials design [Internet]. Warrendale: The Minerals, Metals & Materials Society; c2003 [cited 2019 Jan 13]. Available from: https://www.tms.org/pubs/journals/JOM/0312/LiuII/LiuII- 0312.html.

[22] Liu ZK. Perspective on materials genome. Chin Sci Bull 2013;58(35):3618–22. Chinese. link1

[23] Liu ZK. Perspective on materials genome. Chin Sci Bull 2014;59(15):1619–23. link1

[24] Liu ZK. First-principles calculations and CALPHAD modeling of thermodynamics. J Phase Equilibria Diffus 2009;30(5):517–34. link1

[25] Shang SL, Wang Y, Liu ZK. ESPEI: extensible, self-optimizing phase equilibrium infrastructure for magnesium alloys. In: Proceedings of the Magnesium Technology 2010—TMS 2010 Annual Meeting and Exhibition; 2010 Feb 14– 18; Seattle, WA, USA; 2010. p. 617–22. link1

[26] Otis RA, Liu ZK. High-throughput thermodynamic modeling and uncertainty quantification for ICME. JOM 2017;69(5):886–92. link1

[27] Bocklund BJ, Otis R, Egorov A, Obaied A, Roslyakova I, Liu ZK. ESPEI for efficient thermodynamic database development, modification, and uncertainty quantification: application to Cu–Mg. MRS Commun 2019;9(2):618–27. link1

[28] Wang Y, Hector Jr LG, Zhang H, Shang SL, Chen LQ, Liu ZK. Thermodynamics of the Ce c–a transition: density-functional study. Phys Rev B 2008;78 104113. link1

[29] Wang Y, Shang SL, Zhang H, Chen LQ, Liu ZK. Thermodynamic fluctuations in magnetic states: Fe3Pt as a prototype. Philos Mag Lett 2010;90(12):851–9. link1

[30] Liu ZK, Wang Y, Shang S. Thermal expansion anomaly regulated by entropy. Sci Rep 2014;4(1):7043. link1

[31] Liu ZK, Wang Y, Shang SL. Origin of negative thermal expansion phenomenon in solids. Scr Mater 2011;65(2):664–7. link1

[32] Liu ZK, Shang SL, Wang Y. Fundamentals of thermal expansion and thermal contraction. Materials 2017;10(4):410. link1

[33] Paulson NH, Bocklund BJ, Otis RA, Liu ZK, Stan M. Quantified uncertainty in thermodynamic modeling for materials design. Acta Mater 2019;174:9–15. link1

[34] The materials project [Internet]. [cited 2019 Jan 13]. Available from: http://materialsproject.org/.

[35] OQMD. The open quantum materials database [Internet]. [cited 2019 Jan 13]. Available from: http://oqmd.org.

[36] AFLOW. Automatic flow for materials discovery [Internet]. [cited 2019 Jan 13]. Available from: http://www.aflowlib.org.

[37] Olson GB. Computational design of hierarchically structured materials. Science 1997;277(5330):1237–42. link1

[38] Olson GB, Kuehmann CJ. Materials genomics: from CALPHAD to flight. Scr Mater 2014;70:25–30. link1

[39] Wang Y, Liu ZK, Chen LQ. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater 2004;52(9):2665–71. link1

[40] Shang SL, Wang Y, Kim D, Liu ZK. First-principles thermodynamics from phonon and Debye model: application to Ni and Ni3Al. Comput Mater Sci 2010;47(4):1040–8. link1

[41] Mantina M, Wang Y, Arróyave R, Chen LQ, Liu ZK, Wolverton C. First-principles calculation of self-diffusion coefficients. Phys Rev Lett 2008;100(21):215901. link1

[42] Zhou BC, Shang SL, Wang Y, Liu ZK. Diffusion coefficients of alloying elements in dilute Mg alloys: a comprehensive first-principles study. Acta Mater 2016;103:573–86. link1

[43] Hargather CZ, Shang SL, Liu ZK. Electronic structures and materials properties calculations of Ni and Ni-based superalloys. In: Horstemeyer MF, editor. Integrated computational materials engineering (ICME) for metals: concepts and case studies. Hoboken: John Wiley & Sons; 2018. p. 413–46. link1

[44] Wang Y, Hu YJ, Bocklund B, Shang SL, Zhou BC, Liu ZK, et al. First-principles thermodynamic theory of Seebeck coefficients. Phys Rev B 2018;98 (22):224101. link1

[45] Wang Y, Chong X, Hu YJ, Shang SL, Drymiotis FR, Firdosy SA, et al. An alternative approach to predict Seebeck coefficients: application to La3-xTe4. Scr Mater 2019;169:87–91. link1

[46] Evteev AV, Levchenko EV, Belova IV, Kozubski R, Liu ZK, Murch GE. Thermotransport in binary system: case study on Ni50Al50 melt. Philos Mag 2014;94(31):3574–602. link1

[47] Sarder U, Ahmed T, Wang WY, Kozubski R, Liu ZK, Belova IV, et al. Mass and thermal transport in liquid Cu–Ag alloys. Philos Mag 2019;99(4):468–91. link1

[48] Wang Y, Chen LQ, Liu ZK, Mathaudhu SN. First-principles calculations of twinboundary and stacking-fault energies in magnesium. Scr Mater 2010;62 (9):646–9. link1

[49] Shang SL, Wang WY, Wang Y, Du Y, Zhang JX, Patel AD, et al. Temperaturedependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation. J Phys Condens Matter 2012;24(15):155402. link1

[50] Wang WY, Shang SL, Wang Y, Mei ZG, Darling KA, Kecskes LJ, et al. Effects of alloying elements on stacking fault energies and electronic structures of binary Mg alloys: a first-principles study. Mater Res Lett 2014;2(1):29–36. link1

[51] Hargather CZ, Shang SL, Liu ZK. A comprehensive first-principles study of solute elements in dilute Ni alloys: diffusion coefficients and their implications to tailor creep rate. Acta Mater 2018;157:126–41. link1

[52] Manga VR, Saal JE, Wang Y, Crespi VH, Liu ZK. Magnetic perturbation and associated energies of the antiphase boundaries in ordered Ni3Al. J Appl Phys 2010;108(10):103509. link1

[53] Manga VR, Shang SL, Wang WY, Wang Y, Liang J, Crespi VH, et al. Anomalous phonon stiffening associated with the (111) antiphase boundary in L12Ni3Al. Acta Mater 2015;82:287–94. link1

[54] Wang WY, Xue F, Zhang Y, Shang SL, Wang Y, Darling KA, et al. Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12Co3(Al,TM): a comprehensive first-principles study. Acta Mater 2018;145:30–40. link1

[55] Fang HZ, Wang Y, Shang SL, Jablonski PD, Liu ZK. First-principles calculations of interfacial and segregation energies in a-Cr2O3. J Phys Condens Matter 2012;24(22):225001. link1

[56] Wang WY, Shang SL, Wang Y, Hu YJ, Darling KA, Kecskes LJ, et al. Lattice distortion induced anomalous ferromagnetism and electronic structure in fcc Fe and Fe–TM (TM = Cr, Ni, Ta and Zr) alloys. Mater Chem Phys 2015;162:748–56. link1

[57] Wang Y, Liu ZK, Chen LQ, Wolverton C. First-principles calculations of b 00 - Mg5Si6/a-Al interfaces. Acta Mater 2007;55(17):5934–47. link1

[58] Liu XL, Shang SL, Hu YJ, Wang Y, Du Y, Liu ZK. Insight into c-Ni/c0 -Ni3Al interfacial energy affected by alloying elements. Mater Des 2017;133: 39–46. link1

[59] Shang SL, Wang Y, Liu ZK. First-principles elastic constants of a- and h-Al2O3. Appl Phys Lett 2007;90(10):101909. link1

[60] Shang SL, Zhang H, Wang Y, Liu ZK. Temperature-dependent elastic stiffness constants of a- and h-Al2O3 from first-principles calculations. J Phys Condens Matter 2010;22(37):375403. link1

[61] Liu ZK, Zhang H, Ganeshan S, Wang Y, Mathaudhu SN. Computational modeling of effects of alloying elements on elastic coefficients. Scr Mater 2010;63(7):686–91. link1

[62] Hu YJ, Fellinger MR, Butler BG, Wang Y, Darling KA, Kecskes LJ, et al. Soluteinduced solid-solution softening and hardening in bcc tungsten. Acta Mater 2017;141:304–16. link1

[63] Zhang SH, Beyerlein IJ, Legut D, Fu ZH, Zhang Z, Shang SL, et al. Effect of strain on the stacking fault energies, dislocation core structure and Peierls stress of magnesium and its alloys. Phys Rev B 2017;95:224106. link1

[64] Shang SL, Shimanek J, Qin SP, Wang Y, Beese AM, Liu ZK. Unveiling dislocation characteristics in Ni3Al from stacking fault energy and ideal strength: a firstprinciples study via pure alias shear deformation. Phys Rev B 2020;101:024102. link1

[65] Wang Y, Hector Jr LG, Zhang H, Shang S, Chen LQ, Liu ZK. A thermodynamic framework for a system with itinerant-electron magnetism. J Phys Condens Matter 2009;21(32):326003. link1

[66] Shang SL, Wang Y, Liu ZK. Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: the case of bcc Fe. Phys Rev B 2010;82(1):014425. link1

[67] Shang SL, Saal JE, Mei ZG, Wang Y, Liu ZK. Magnetic thermodynamics of fcc Ni from first-principles partition function approach. J Appl Phys 2010;108 (12):123514. link1

[68] Kim H. Thermodynamic modeling and mechanical properties modeling of Long Periodic Stacking Ordered (LPSO) phases [dissertation]. University Park: Pennsylvania State University; 2019. link1

[69] Qin S, Shang SL, Shimanek J, Liu ZK, Beese AM. Macroscopic plastic deformation through an integrated first-principles calculations and finite element simulations: application to nickel single crystal. 2020. arXiv:2002.08552.

[70] Liu ZK. Computational thermodynamics and its applications. Acta Mater 2020. In press. link1

[71] Campbell CE, Kattner UR, Liu ZK. File and data repositories for next generation CALPHAD. Scr Mater 2014;70:7–11. link1

[72] Otis RA, Liu ZK. Pycalphad: CALPHAD-based computational thermodynamics in Python. J Open Res Softw 2017;5(1):1. link1

[73] Pycalphad: computational thermodynamics [Internet]. c2015 [cited 2017 Jul 20]. Available from: http://pycalphad.org.

[74] ESPEI: extensible self-optimizing phase equilibria infrastructure [Internet]. c2018–2019 [cited 2018 Apr 11]. Available from: http://espei.org.

[75] Databases [Internet]. Solna: Thermo-Calc Software; [cited 2019 Jan 13]. Available from: https://www.thermocalc.com/products-services/databases/.

[76] FactSage 7.3—summary of databases [Internet]. [cited 2019 Jan 13]. Available from: http://www.crct.polymtl.ca/fact/documentation/FSData.htm.

[77] CompuTherm databases [Internet]. Middleton: CompuTherm LLC; [cited 2019 Jan 13]. Available from: http://www.computherm.com/index.php?route= product/category&path=59.

[78] DFTTK: density functional theory tool kits [Internet]. San Francisco: The GitHub; c2020 [cited 2019 Jan 13]. Available from: https://github.com/ PhasesResearchLab/dfttk.

[79] Liu ZK. A materials research paradigm driven by computation. JOM 2009;61 (10):18–20. link1

[80] Liu ZK, Li B, Lin H. Multiscale entropy and its implications to critical phenomena, emergent behaviors, and information. J Phase Equilibria Diffus 2019;40(4):508–21. link1

Related Research