Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 11 doi: 10.1016/j.eng.2020.04.015

Development of Bioimplants with 2D, 3D, and 4D Additive Manufacturing Materials

a Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
b Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
c Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
d CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China

# These authors contributed equally to this work.

Received: 2019-11-18 Revised: 2020-03-28 Accepted: 2020-04-29 Available online: 2020-10-08

Next Previous

Abstract

Over the past 30 years, additive manufacturing (AM) has developed rapidly and has demonstrated great potential in biomedical applications. AM is a materials-oriented manufacturing technology, since the solidification mechanism, architecture resolution, post-treatment process, and functional application are based on the materials to be printed. However, 3D printable materials are still quite limited for the fabrication of bioimplants. In this work, 2D/3D AM materials for bioimplants are reviewed. Furthermore, inspired by Tai Chi, a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group. With the development of multi-material printing technology, the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Kolan KCR, Leu MC, Hilmas GE, Brown RF, Velez M. Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication 2011;3(2):025004. link1

[ 2 ] Kang CW, Fang FZ. State of the art of bioimplants manufacturing: part I. Adv Manuf 2018;6(1):20–40. link1

[ 3 ] Ho CMB, Ng SH, Yoon YJ. A review on 3D printed bioimplants. Int J Precis Eng Manuf 2015;16(5):1035–46. link1

[ 4 ] Gilbert F. A threat to autonomy? The intrusion of predictive brain implants. AJOB Neurosci 2015;6(4):4–11. link1

[ 5 ] Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable materials and metallic implants—a review. J Funct Biomater 2017;8(4):44. link1

[ 6 ] Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 2016;83:127–41. link1

[ 7 ] Lee DJ, Lee JM, Kim EJ, Takata T, Abiko Y, Okano T, et al. Bio-implant as a novel restoration for tooth loss. Sci Rep 2017;7:7414. link1

[ 8 ] Kang C, Fang F. State of the art of bioimplants manufacturing: part II. Adv Manuf 2018;6(2):137–54. link1

[ 9 ] Kurella A, Dahotre NB. Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 2005;20(1):5–50. link1

[10] German Society for Biomedical Engineering, National Academy of Science and Engineering. Bioimplants: biological, biologised and bio functionalised implants. Frankfurt: Association for Electrical, Electronic and Information Technologies (VDE); 2011.

[11] Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World J Clin Cases 2015;3(1):52–7. link1

[12] Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019;365(6452):482–7. link1

[13] Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019;364(6439):458–64. link1

[14] Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 2018;143:172–96. link1

[15] Song WW, Heo JH, Lee JH, Park YM, Kim YD. Osseointegration of magnesiumincorporated sand-blasted acid-etched implant in the dog mandible: resonance frequency measurements and histomorphometric analysis. Tissue Eng Regen Med 2016;13(2):191–9. link1

[16] Tan ETW, Ling JM, Dinesh SK. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg 2016;124(5):1531–7. link1

[17] Chen L, Deng C, Li J, Yao Q, Chang J, Wang LM, et al. 3D printing of a lithium– calcium–silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials 2019;196:138–50. link1

[18] Smith KE, Dupont KM, Safranski DL, Blair JW, Buratti DR, Zeetser V, et al. Use of 3D printed bone plate in novel technique to surgically correct hallux valgus deformities. Tech Orthop 2016;31(3):181–9. link1

[19] Zhang Y, Xu J, Ruan Y, Yu MK, O’Laughlin M, Wise H, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bonefracture healing in rats. Nat Med 2016;22(10):1160–9. link1

[20] Wu G, Chan KC, Zhu L, Sun L, Lu J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 2017;545(7652):80–3. link1

[21] Gu X, Mao Z, Ye S, Koo Y, Yun Y, Tiasha TR, et al. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesiumbased cardiovascular stents. Colloids Surf B Biointerfaces 2016;144:170–9. link1

[22] Li J, Li X, Luo T, Wang R, Liu C, Chen S, et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot 2018;3(19): eaat8829. link1

[23] Mudali UK, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana 2003;28 (3):601–37. link1

[24] Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater 2016;3(2):79–86. link1

[25] Kulkarni M, Mazare A, Gongadze E, Perutkova S, Kralj-lglic V, Milosev I, et al. Titanium nanostructures for biomedical applications. Nanotechnology 2015;26(6):062002. link1

[26] Kwasniak P, Garbacz H, Kurzydlowski KJ. Solid solution strengthening of hexagonal titanium alloys: restoring forces and stacking faults calculated from first principles. Acta Mater 2016;102:304–14. link1

[27] Mao L, Shen L, Chen JH, Zhang X, Kwak M, Wu Y, et al. A promising biodegradable magnesium alloy suitable for clinical vascular stent application. Sci Rep 2017;7:46343. link1

[28] Kannan MB. Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Mater Lett 2012;76:109–12. link1

[29] Surmeneva MA, Muhametkaliyev TM, Khakbaz H, Sumenev RA, Kannan MB. Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Mater Lett 2015;152:280–2. link1

[30] Subramanian B, Muraleedharan CV, Ananthakumar R, Jayachandran M. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf Coat Tech 2011;205(21–22):5014–20. link1

[31] Cheung HY, Lau KT, Lu T, Hui D. A critical review on polymer based bioengineered materials for scaffold development. Compos Part B Eng 2007;38 (3):291–300. link1

[32] Wong JY, Bronzino JD, Peterson DR, editors. Biomaterials: principles and practices. Boca Raton: CRC Press; 2012. link1

[33] Liao P, Xing L, Zhang S, Sun D. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small 2019;15 (36):1901197. link1

[34] Doucet C, Ernou I, Zhang Y, Llense JR, Begot L, Lataillade JJ. Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 2005;205(2): 228–36. link1

[35] Dimmeler S, Burchfield J, Zeiher AM. Cell-based therapy of myocardial infarction. Arterioscler Thromb Vasc Biol 2008;28(2):208–16. link1

[36] Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 2013;25(41):5863–8. link1

[37] Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 2010;12:55–85. link1

[38] Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds. PLoS ONE 2018;13(4):e0195291. link1

[39] Correa D, Lietman SA. Articular cartilage repair: current needs, methods and research directions. Semin Cel Dev Biol 2017;62:67–77. link1

[40] Awad NK, Niu H, Ali U, Morsi YS, Lin T. Electrospun fibrous scaffolds for smalldiameter blood vessels: a review. Membranes 2018;8(1):15. link1

[41] Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H. Tissue-engineered vascular grafts: balance of the four major requirements. Colloid Interface Sci Commun 2018;23:34–44. link1

[42] Steines D, Lang P, Fitz W, inventors; Conformis Inc., Steines D, Lang P, Fitz W, assignees. Interpositional joint implant. World Intellectual Property Organization patent WO2007/064349. 2007 Sep 27.

[43] Bojarski RA, Fitz W, inventors; ConforMIS, Inc., assignee. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components. United States patent US 13/ 915609. 2013 Dec 12.

[44] Soro N, Attar H, Brodie E, Veidt M, Molotnikov A, Dargusch MS. Evaluation of the mechanical compatibility of additively manufactured porous T–25Ta alloy for load-bearing implant applications. J Mech Behav Biomed Mater 2019;97:149–58. link1

[45] Svensson RB, Hassenkam T, Grant CA, Magnusson SP. Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts. Biophys J 2010;99(12):4020–7. link1

[46] Haleem A, Javaid M. Polyether ether ketone (PEEK) and its manufacturing of customised 3D printed dentistry parts using additive manufacturing. Clin Epidemiol Glob Health 2019;7(4):654–60. link1

[47] Meboldt M, Klahn C, editors. Industrializing additive manufacturing— proceedings of additive manufacturing in products and applications— AMPA2017. Cham: Springer; 2017. link1

[48] Zhang C, Wang L, Kang J, Fuentes OM, Li D. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. J Mech Behav Biomed Mater 2020;103:103561. link1

[49] Zamani Y, Amoabediny G, Mohammadi J, Seddiqi H, Helder MN, ZandiehDoulabi B, et al. 3D-printed poly(e-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering. J Mech Behav Biomed Mater 2020;104:103638. link1

[50] Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed poly-epsilon-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, bio-oss, or decellularized bone matrix. Tissue Eng Part A 2017;23(11–12):503–14. link1

[51] Liu D, Nie W, Li D, Wang W, Zheng L, Zhang J, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J 2019;362:269–79. link1

[52] Park YJ, Cha JH, Bang SI, Kim SY. Clinical application of three-dimensionally printed biomaterial polycaprolactone (PCL) in augmentation rhinoplasty. Aesthetic Plast Surg 2019;43(2):437–46. link1

[53] Chen X, Gao C, Jiang J, Wu Y, Zhu P, Chen G. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater 2019;14(6):065003. link1

[54] Petersmann S, Spoerk M, Huber P, Lang M, Pinter G, Arbeiter F. Impact optimization of 3D-printed poly(methyl methacrylate) for cranial implants. Macromol Mater Eng 2019;304(11):1900263. link1

[55] Zhu Y, Liu K, Deng J, Ye J, Ai FR, Ouyang H, et al. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties. Int J Nanomed 2019;14:5977–87. link1

[56] Liu X, Zou B, Xing H, Huang C. The preparation of ZrO2–Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceram Int 2020;46 (1):937–44. link1

[57] Chen S, Shi Y, Luo Y, Ma J. Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloids Surf B Biointerfaces 2019;179:121–7. link1

[58] Daher S, Leary J, Ewers R, Coelho PG, Bonfante EA. Histological analysis of an implant retrieved from a b-tricalcium phosphate graft after 4 years: a case study. J Long Term Eff Med Implants 2019;29(2):135–40. link1

[59] Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, et al. 3D printing of ceramics: a review. J Eur Ceram Soc 2019;39(4):661–87. link1

[60] Martinez-Marquez D, Jokymaityte M, Mirnajafizadeh A, Carty CP, Lloyd D, Stewart RA. Development of 18 quality control gates for additive manufacturing of error free patient-specific implants. Materials 2019;12 (19):3110. link1

[61] Popov VV Jr, Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E, Kolomiets A, et al. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett 2018;8(4):337–44. link1

[62] Gupta VB, Anita S, Hegde ML, Zecca L, Garruto RM, Ravid R, et al. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 2005;62 (2):143–58. link1

[63] Tomljenovic L. Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 2011;23(4):567–98. link1

[64] Avila-Costa MR, Fortoul TI, Colin-Barenque L, Ordoñez-Librado JL, GutiérrezValdez AL. Vanadium and the nervous system. In: Fortoul TI, Avila-Costa MR, editors. Vanadium: its impact on health. New York: Nova Science Publishers; 2007. p. 29–42. link1

[65] Shen X, Shukla P, Swanson P, An Z, Prabhakaran S, Waugh D, et al. Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peening. J Alloys Compd 2019;801:327–42. link1

[66] Yamanoglu R, Efendi E, Kolayli F, Uzuner H, Daoud I. Production and mechanical properties of Ti–5Al–2.5Fe–xCu alloys for biomedical applications. Biomed Mater 2018;13(2):025013. link1

[67] Hao L, Lawrence J, Phua YF, Chian KS, Lim GC, Zheng HY. Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment. Biomed Mater Res B 2005;73(1):148–56. link1

[68] Parsapour A, Khorasani SN, Fathi MH. Effect of surface treatment and metallic coating on corrosion behavior and biocompatibility of surgical 316L stainless steel implant. J Mater Sci Technol 2012;28(2):125–31. link1

[69] Hao L, Dadbakhsh S, Seaman O, Felstead M. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Technol 2009;209(17):5793–801. link1

[70] Chai H, Guo L, Wang X, Fu Y, Guan J, Tan L, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci Mater Med 2011;22(11):2525–35. link1

[71] Lodhi MJK, Deen KM, Greenlee-Wacker MC, Haider W. Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit Manuf 2019;27: 8–19. link1

[72] Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention—a review. Recent Pat Corros Sci 2010;2:40–54. link1

[73] McCafferty E. Effect of ion implantation on the corrosion behavior of iron, stainless steels, and aluminum—a review. Corrosion 2001;57(12):1011–29. link1

[74] Mohan CC, Prabhath A, Cherian AM, Vadukumpully S, Nair SV, Chennazhi K, et al. Nanotextured stainless steel for improved corrosion resistance and biological response in coronary stenting. Nanoscale 2015;7(2):832–41. link1

[75] Misra RDK, Nune C, Pesacreta TC, Somani MC, Karjalainen LP. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence. Acta Biomater 2013;9(4):6245–58. link1

[76] Manam N, Harun WSW, Shri DNA, Ghani SAC, Kurniawan T, Ismail MH, et al. Study of corrosion in biocompatible metals for implants: a review. J Alloys Compd 2017;701:698–715. link1

[77] Alvarado J, Maldonado R, Marxuach J, Otero R. Biomechanics of hip and knee prostheses [dissertation]. Mayaguez: University of Puerto Rico Mayaguez; 2003. link1

[78] Xiang DD, Wang P, Tan X, Chandra S, Wang C, Nai MLS, et al. Anisotropic microstructure and mechanical properties of additively manufactured Co– Cr–Mo alloy using selective electron beam melting for orthopedic implants. Mater Sci Eng A 2019;765:138270. link1

[79] Sargeant A, Goswami T. Hip implants—paper VI—ion concentrations. Mater Des 2007;28(1):155–71. link1

[80] Li L, Zhang M, Li Y, Zhao J, Qin L, Lai Y. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. Regen Biomater 2017;4(2):129–37. link1

[81] Wang H, Zhu S, Wang L, Feng Y, Ma X, Guan S. Formation mechanism of Cadeficient hydroxyapatite coating on Mg–Zn–Ca alloy for orthopaedic implant. Appl Surf Sci 2014;307:92–100. link1

[82] Rad HRB, Idris MH, Kadir MRA, Farahany S. Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Mater Des 2012;33:88–97. link1

[83] Gil-Santos A, Marco I, Moelans N, Hort N, van der Biest O. Microstructure and degradation performance of biodegradable Mg–Si–Sr implant alloys. Mater Sci Eng C 2017;71:25–34. link1

[84] Brar HS, Wong J, Manuel MV. Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 2012;7:87–95. link1

[85] Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C 2017;71:1253–66. link1

[86] Yang Y, Scenini F, Curioni M. A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochim Acta 2016;198:174–84. link1

[87] Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M. Zinc-based alloys for degradable vascular scent applications. Acta Biomater 2018;71:1–23. link1

[88] Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 2013;25(18):2577–82. link1

[89] Vojteˇch D, Kubasek J, Serak J, Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 2011;7(9):3515–22. link1

[90] Mostaed E, Sikora-Jasinska M, Mostaed A, Loffredo S, Demir AG, Preuitali B, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J Mech Behav Biomed Mater 2016;60:581–602. link1

[91] Levy GK, Goldman J, Aghion E. The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals 2017;7(10):402. link1

[92] Li P, Zhang W, Dai J, Xepapadeas AB, Schweizer E, Alexander D, et al. Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Mater Sci Eng C 2019;103:109826. link1

[93] Su Y, Yang H, Gao J, Qin Y, Zheng Y, Zhu D. Interfacial zinc phosphate is the key to controlling biocompatibility of metallic zinc implants. Adv Sci 2019;6 (14):1900112. link1

[94] Gorejová R, Haverová L, Orinˇaková R, Orinˇak A, Orinˇak M. Recent advancements in Fe-based biodegradable materials for bone repair. J Mater Sci 2019;54(3):1913–47. link1

[95] Cheng J, Liu B, Wu Y, Zheng Y. Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. J Mater Sci Technol 2013;29 (7):619–27. link1

[96] Nie F, Zheng Y, Wei S, Hu C, Yang G. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater 2010;5 (6):065015. link1

[97] Purnama A, Herrmawan H, Couet J, Mantovani D. Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater 2010;6(5):1800–7. link1

[98] Quadbeck P, Kümmel K, Hauser R, Standke G, Adler J, Stephani G, et al. Structural and material design of open-cell powder metallurgical foams. Adv Eng Mater 2011;13(11):1024–30. link1

[99] Li Y, Jahr H, Lieaeart K, Pavanram P, Yilmaz A, Li F, et al. Additively manufactured biodegradable porous iron. Acta Biomater 2018;77:380–93. link1

[100] Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe–Mn–Ca/Mg alloys. Acta Biomater 2016;45:375–86. link1

[101] Yang C, Huang Z, Wang X, Wu C, Chang J. 3D printed Fe scaffolds with HA nanocoating for bone regeneration. ACS Biomater Sci Eng 2018;4(2):608–16. link1

[102] Wang WH, Dong C, Shek C. Bulk metallic glasses. Mater Sci Eng R Rep 2004;44(2–3):45–89. link1

[103] Schroers J, Hodges TM, Chan S, Kyriakides TR. Bulk metallic glasses for biomedical applications. JOM 2009;61(9):21–9. link1

[104] Wang J, Loye AM, Ketkaew J, Schroers J, Kyriakides TR. Hierarchical microand nano-patterning of metallic glass to engineer cellular responses. ACS Appl Bio Mater 2018;1(1):51–8. link1

[105] Studart AR. Additive manufacturing of biologically-inspired materials. Chem Soc Rev 2016;45(2):359–76. link1

[106] Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater 2018;79:37–59. link1

[107] Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 2017;135:85–95. link1

[108] Faveri M, Figueiredo LC, Feres M. Considerations about designing and reporting randomized clinical trials—response to the letter to the editor from Preus et al. J Evid Based Dent Pract 2015;15(2):87–8. link1

[109] Khorasani AM, Gibson I, Goldberg M, Littlefair G. A comprehensive study on surface quality in 5-axis milling of SLM Ti–6Al–4V spherical components. Int J Adv Manuf Technol 2017;94(9–12):3765–84. link1

[110] Wang D, Wang Y, Wang J, Song C, Yang Y, Zhang Z, et al. Design and fabrication of a precision template for spine surgery using selective laser melting (SLM). Materials 2016;9(7):608. link1

[111] Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Al Rifai M, Al Jabbari YS. Selective laser melting technique of Co–Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont 2015;24(4):303–12. link1

[112] Körner C. Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 2016;61(5):361–77. link1

[113] Ramakrishnaiah R, Al Kheraif AA, Mohammad A, Divakar DD, Kotha SB, Celur SL, et al. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi J Biol Sci 2017;24 (4):787–96. link1

[114] Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mech Eng 2012;2012:208760. link1

[115] Zeng W, Lin F, Shi T, Zhang R, Nian Y, Ruan J, et al. Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images. Rapid Prototyping J 2008;14(5):280–4. link1

[116] Gronet PM, Waskewicz GA, Richardson C. Preformed acrylic cranial implants using fused deposition modeling: a clinical report. J Prosthet Dent 2003;90 (5):429–33. link1

[117] Singh S, Ramakrishna S, Singh R. Material issues in additive manufacturing: a review. J Manuf Process 2017;25:185–200. link1

[118] Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater 2011;23(47):5651–7. link1

[119] Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010;31(24):6121–30. link1

[120] Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 2005;63(7):1006–15. link1

[121] Nickels L. World’s first patient-specific jaw implant. Met Powder Rep 2012;67 (2):12–4. link1

[122] Tang H, Zhao P, Xiang C, Liu N, Jia L. Ti–6Al–4V orthopedic implants made by selective electron beam melting. In: Froes FH, Qian M, editors. Titanium in medical and dental applications. Cambridge: Woodhead Publishing Ltd.; 2018. p. 239–49. link1

[123] Zhang X, Leary M, Tang HP, Song T, Qian M. Selective electron beam manufactured Ti–6Al–4V lattice structures for orthopedic implant applications: current status and outstanding challenges. Curr Opin Solid State Mater Sci 2018;22(3):75–99. link1

[124] Hayat MD, Chen G, Khan S, Liu N, Tang H, Cao P. Physical and tensile properties of NiTi alloy by selective electron beam melting. Key Eng Mater 2018;770:148–54. link1

[125] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773–85. link1

[126] Jiang J, Bao B, Li M, Sun J, Zhang C, Li Y, et al. Fabrication of transparent multilayer circuits by inkjet printing. Adv Mater 2016;28(7):1420–6. link1

[127] Liu P, Shen H, Zhi Y, Si J, Shi J, Guo L, et al. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/ gelatin composite hydrogels. Colloids Surf B Biointerfaces 2019;181: 1026–34. link1

[128] Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, et al. Human stem cell based corneal tissue mimicking structures using laserassisted 3D bioprinting and functional bioinks. Biomaterials 2018;171:57–71. link1

[129] Gungor-Ozkerim PS, Inci I, Zhagn YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci 2018;6(5):915–46. link1

[130] Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 2016;44 (6):2090–102. link1

[131] Faramarzi N, Yazdi IK, Nabavinia M, Gemma A, Fanelli A, Caizzone A, et al. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv Healthc Mater 2018;7(11):1701347. link1

[132] Parak A, Pradeep P, du Toit LC, Kumar P, Choonara YE, Pillay V, et al. Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today 2019;24(1):198–205. link1

[133] Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34(3):312–9. link1

[134] Tibbits S. 4D printing: multi-material shape change. Architectural Design 2014;84(1):116–21. link1

[135] Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413–8. link1

[136] Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103(13):131901. link1

[137] Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007. link1

[138] Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3(4):e1602890. link1

[139] Lin C, Lv J, Li Y, Zhang F, Li J, Liu Y, et al. 4D-printed biodegradable and remotely controllable shape memory occlusion devices. Adv Funct Mater 2019;29(51):1906569. link1

[140] Huang L, Jiang R, Wu J, Song J, Bai H, Li B, et al. Ultrafast digital printing toward 4D shape changing materials. Adv Mater 2017;29(7):1605390. link1

[141] Wan X, Wei H, Zhang F, Liu Y, Leng J. 3D printing of shape memory poly (D, Llactide-co-trimethylene carbonate) by direct ink writing for shape-changing structures. J Appl Polym Sci 2019;136(44):48177. link1

[142] Mao Z, Zhu K, Pan L, Liu G, Tang T, He Y, et al. Direct-ink written shapemorphing film with rapid and programmable multimotion. Adv Mater Tech 2020;5(2):1900974. link1

[143] Lee AY, An J, Chua CK. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 2017;3(5):663–74. link1

[144] Caputo MP, Berkowitz AE, Armstrong A, Mullner P, Solomon CV. 4D printing of net shape parts made from Ni–Mn–Ga magnetic shape-memory alloys. Addit Manuf 2018;21:579–88. link1

[145] Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 2014;16(9):1140–6. link1

[146] Liu G, Zhao Y, Wu G, Lu J. Origami and 4D printing of elastomer-derived ceramic structures. Sci Adv 2018;4(8):eaat0641. link1

[147] Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature 2016;540(7633):371–8. link1

[148] Randall CL, Gultepe E, Gracias DH. Self-folding devices and materials for biomedical applications. Trends Biotechnol 2012;30(3):138–46. link1

[149] Rapp B. Nitinol for stents. Mater Today 2004;7(5):13. link1

[150] Leng J, Lu H, Liu Y, Huang W, Du S. Shape-memory polymers—a class of novel smart materials. MRS Bull 2009;34(11):848–55. link1

[151] Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113. link1

[152] Zhao Y, Xuan C, Qian X, Alsaid Y, Hua M, Jin L, et al. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci Robot 2019;4(33):eaax7112. link1

[153] Kwan KW, Li SJ, Hau NY, Li W, Feng SP, Ngan AHW. Light-stimulated actuators based on nickel hydroxide-oxyhydroxide. Sci Robot 2018;3(18):eaat4051. link1

[154] Wani OM, Zeng H, Priimagi A. A light-driven artificial flytrap. Nat Commun 2017;8:15546. link1

[155] Chen L, Weng M, Zhou P, Huang F, Liu C, Fan S, et al. Graphene-based actuator with integrated-sensing function. Adv Funct Mater 2019;29(5):1806057. link1

[156] Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, et al. Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 2009;113 (22):9921–7. link1

[157] Wang E, Desai MS, Lee SW. Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 2013;13(6):2826–30. link1

[158] Jiang H, Li C, Huang X. Actuators based on liquid crystalline elastomer materials. Nanoscale 2013;5(12):5225–40. link1

[159] Dong L, Zhao Y. Photothermally driven liquid crystal polymer actuators. Mater Chem Front 2018;2(11):1932–43. link1

[160] Gelebart AH, Mulder DJ, Vantomme G, Schenning APHJ, Broer DJ. A rewritable, reprogrammable, dual light-responsive polymer actuator. Angew Chem Int Ed Engl 2017;56(43):13436–9. link1

[161] Iqbal D, Samiullah MH. Photo-responsive shape-memory and shape-changing liquid-crystal polymer networks. Materials 2013;6(1):116–42. link1

[162] Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels. Adv Mater 2019;31(26):e1807333. link1

[163] Nishiguchi A, Zhang H, Schweizerhof S, Schulte MF, Mourran A, Moller M. 4D printing of a light-driven soft actuator with programmed printing density. ACS Appl Mater Interfaces 2020;12(10):12176–85. link1

[164] Zhu P, Yang W, Wang R, Gao S, Li B, Li Q. 4D printing of complex structures with a fast response time to magnetic stimulus. ACS Appl Mater Interfaces 2018;10(42):36435–42. link1

[165] Zhang Y, Wang L, Gao W, Gu T, Li Z, Li X, et al. Bioinspired from butterfly wings: programmable actuation of isolated rods architectures for magneticassisted microswitches. Smart Mater Struct 2019;28(7):075014. link1

[166] Gao W, Wang L, Wang X, Liu H. Magnetic driving flowerlike soft platform: biomimetic fabrication and external regulation. ACS Appl Mater Interfaces 2016;8(22):14182–9. link1

[167] Gong D, Cai J, Celi N, Feng L, Jiang Y, Zhang D. Bio-inspired magnetic helical microswimmers made of nickel-plated Spirulina with enhanced propulsion velocity. J Magn Magn Mater 2018;468:148–54. link1

[168] Joyee EB, Pan Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot 2019;6(3):333–45. link1

[169] Lu H, Zhang M, Yang Y, Huang Q, Fukuda T, Wang Z, et al. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun 2018;9:3944. link1

[170] Tognato R, Armiento AR, Bonfrate V, Levato R, Malda J, Alini M, et al. A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics. Adv Funct Mater 2019;29(9):1804647. link1

[171] Ren Z, Hu W, Dong X, Sitti M. Multi-functional soft-bodied jellyfish-like swimming. Nat Commun 2019;10:2703. link1

[172] Xia X, Afshar A, Yang H, Portela CM, Kochmann DM, Di Leo CV, et al. Electrochemically reconfigurable architected materials. Nature 2019;573 (7773):205–13. link1

[173] Schaffner M, Faber JA, Pianegonda L, Ruhs PA, Coulter F, Studart AR. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat Commun 2018;9:878. link1

[174] Dong Y, Wang J, Guo X, Yang S, Ozen MO, Chen P, et al. Multi-stimuliresponsive programmable biomimetic actuator. Nat Commun 2019;10:4087. link1

[175] Yu J, Xing Y, Li X, Shao L. Dual-stimuli responsive carbon nanotube spongePDMS amphibious actuator. Nanomaterials 2019;9(12):1704. link1

[176] Wang Y, Guo Q, Su G, Cao J, Liu J, Zhang X. Hierarchically structured selfhealing actuators with superfast light- and magnetic-response. Adv Funct Mater 2019;29(50):1906198. link1

[177] Liu JAC, Gillen JH, Mishra SR, Evans BA, Tracy JB. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci Adv 2019;5(8):eaaw2897. link1

[178] Tang J, Yin Q, Qiao Y, Wang T. Shape morphing of hydrogels in alternating magnetic field. ACS Appl Mater Interfaces 2019;11(23):21194–200. link1

[179] Li M, Wang Y, Chen A, Naidu A, Napier BS, Li W, et al. Flexible magnetic composites for light-controlled actuation and interfaces. Proc Natl Acad Sci USA 2018;115(32):8119–24. link1

[180] da Cunha MP, Foelen Y, van Raak RJH, Murphy JN, Engelas TAP, Debije MG, et al. An untethered magnetic- and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators. Adv Opt Mater 2019;7 (7):1801643. link1

[181] Ma C, Lu W, Yang X, He J, Le X, Wang L, et al. Bioinspired anisotropic hydrogel actuators with on–off switchable and color-tunable fluorescence behaviors. Adv Funct Mater 2018;28(7):1704568. link1

[182] Wang J, Wang Z, Song Z, Ren L, Liu Q, Ren L. Biomimetic shape-color doubleresponsive 4D printing. Adv Mater Tech 2019;4(9):1900293. link1

[183] Ionescu E, Kleebe HJ, Riedel R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem Soc Rev 2012;41(15):5032–52. link1

[184] Holzapfel GA. Biomechanics of soft tissue. In: Lemaitre J, editor. Handbook of materials behavior models. Pittsburgh: Academic Press; 2001. p. 1057–71. link1

[185] Orlovskii VP, Komlev VS, Barinov SM. Hydroxyapatite and hydroxyapatitebased ceramics. Inorg Mater 2002;38(10):973–84. link1

[186] Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 2012;336(6086):1275–80. link1

[187] Munch E, Launey ME, Alsen DH, Saiz E, Tomsia AP, Ritchie RO. Tough, bioinspired hybrid materials. Science 2008;322(5907):1516–20. link1

[188] Mao LB, Gao H, Yao H, Liu L, Colfen H, Liu G, et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016;354(6308): 107–10. link1

[189] Chen SM, Gao H, Sun X, Ma Z, Ma T, Xia J, et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy. Matter 2019;1(2):412–27. link1

[190] Chen J, Chen B, Han K, Tang W, Wang Z. A triboelectric nanogenerator as a self-powered sensor for a soft-rigid hybrid actuator. Adv Mater Tech 2019;4 (9):1900337. link1

[191] MacCurdy R, Katzschmann R, Kim Y, Rus D. Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids. In: Okamura A, Menciassi A, Ude A, Burschka D, Lee D, Arrichiello F, editors. Proceeding of IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16–21; Stockholm, Sweden. New York: IEEE; 2016. p. 3878–85. link1

[192] Paterno L, Tortora G, Menciassi A. Hybrid soft-rigid actuators for minimally invasive surgery. Soft Robot 2018;5(6):783–99. link1

[193] Tong WP, Tao NR, Wang ZB, Lu J, Lu K. Nitriding iron at lower temperatures. Science 2003;299(5607):686–8. link1

[194] Sun HQ, Shi YN, Zhang MA, Lu K. Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Acta Mater 2007;55(3):975–82. link1

[195] Yan X, Yin S, Chen C, Jenkins R, Lupoi R, Bolot R, et al. Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition. Mater Res Lett 2019;7(8):327–33. link1

Related Research