Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 9 doi: 10.1016/j.eng.2020.05.018

Metal-Free Hexagonal Perovskite High-Energetic Materials with NH3OH+/NH2NH3+ as B-site Cations

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

Received: 2020-02-06 Revised: 2020-04-25 Accepted: 2020-05-27 Available online: 2020-07-16

Next Previous

Abstract

Designing and synthesizing more advanced high-energetic materials for practical use via a simple synthetic route are two of the most important issues for the development of energetic materials. Through an elaborate design and rationally selected molecular components, two new metal-free hexagonal perovskite compounds, which are named as DAP-6 and DAP-7 with a general formula of (H2dabco)B(ClO4)3 (H2dabco2+ = 1,4-diazabicyclo[2.2.2]octane-1,4-diium), were fabricated via an easily scaled-up synthetic route using NH3OH+ and NH2NH3+ as B-site cations, respectively. Compared with their NH4+ analog ((H2dabco)(NH4)(ClO4)3; DAP-4), which has a cubic perovskite structure, DAP-6 and DAP-7 have higher crystal densities and enthalpies of formation, thus exhibiting higher calculated detonation performances. Specifically, DAP-7 has an ultrahigh thermal stability (decomposition temperatures (Td) = 375.3 °C), a high detonation velocity (D = 8.883 km·s‒1), and a high detonation pressure (P = 35.8 GPa); therefore, it exhibits potential as a heat-resistant explosive. Similarly, DAP-6 has a high thermal stability (Td = 245.9 °C) and excellent detonation performance (D = 9.123 km·s‒1; P = 38.1 GPa). Nevertheless, it also possesses a remarkably high detonation heat (Q = 6.35 kJ·g‒1) and specific impulse (Isp = 265.3 s), which is superior to that of hexanitrohexaazaisowurtzitane (CL-20; Q = 6.23 kJ·g‒1; Isp = 264.8 s). Thus, DAP-6 can serve as a promising high-performance energetic material for practical use.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] Klapötke TM. High energy density materials. Berlin: Springer; 2007. link1

[ 2 ] Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. New York: John Wiley & Sons; 2010. link1

[ 3 ] Meyer R, Köhler J, Homburg A. Explosives. New York: John Wiley & Sons; 2016. link1

[ 4 ] Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q. A promising high-energydensity material. Nat Commun 2017;8(1):181. link1

[ 5 ] Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 2018;9(1):2444. link1

[ 6 ] Tang Y, Kumar D, Shreeve JM. Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4-tetrazine. J Am Chem Soc 2017;139(39):13684–7. link1

[ 7 ] Tang Y, He C, Imler GH, Parrish DA, Shreeve JM. A C–C bonded 5,6-fused bicyclic energetic molecule: exploring an advanced energetic compound with improved performance. Chem Commun 2018;54(75):10566–9. link1

[ 8 ] He C, Yin P, Mitchell LA, Parrish DA, Shreeve JM. Energetic aminated-azole assemblies from intramolecular and intermolecular N–HO and N–HN hydrogen bonds. Chem Commun 2016;52(52):8123–6. link1

[ 9 ] Yang J, Gong X, Mei H, Li T, Zhang J, Gozin M. Design of zero oxygen balance energetic materials on the basis of Diels–Alder chemistry. J Org Chem 2018;83 (23):14698–702. link1

[10] Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,50 -bistetrazole-1,10 -diolate. J Mater Chem 2012;22 (38):20418. link1

[11] Yang C, Zhang C, Zheng Z, Jiang C, Luo J, Du Y, et al. Synthesis and characterization of cyclo-pentazolate salts of NH4 + , NH3OH+ , N2H5 + , C(NH2)3 + , and N(CH3)4 + . J Am Chem Soc 2018;140(48):16488–94. link1

[12] Wang Q, Shao Y, Lu M. Amino-tetrazole functionalized fused triazolo-triazine and tetrazolo–triazine energetic materials. Chem Commun 2019;55 (43):6062–5. link1

[13] Xu Y, Wang P, Lin Q, Du Y, Lu M. Cationic and anionic energetic materials based on a new amphotère. Sci China Mater 2019;62(5):751–8. link1

[14] Bennion JC, Siddiqi ZR, Matzger AJ. A melt castable energetic cocrystal. Chem Commun 2017;53(45):6065–8. link1

[15] Landenberger KB, Bolton O, Matzger AJ. Energetic–energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 2015;137(15):5074–9. link1

[16] Bolton O, Matzger AJ. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed Engl 2011;50 (38):8960–3. link1

[17] Bellas MK, Matzger AJ. Achieving balanced energetics through cocrystallization. Angew Chem Int Ed Engl 2019;58(48):17185–8. link1

[18] Ma P, Jiang JC, Zhu SG, Zhu SG. Synthesis, XRD and DFT studies of a novel cocrystal energetic perchlorate amine salt: methylamine triethylenediamine triperchlorate. Combust Explos Shock Waves 2017;53(3):319–28. link1

[19] Ma P, Zhang L, Zhu S, Chen H. Synthesis, crystal structure and DFT calculation of an energetic perchlorate amine salt. J Cryst Growth 2011;335(1):70–4. link1

[20] Bushuyev OS, Brown P, Maiti A, Gee RH, Peterson GR, Weeks BL, et al. Ionic polymers as a new structural motif for high-energy-density materials. J Am Chem Soc 2012;134(3):1422–5. link1

[21] Li S, Wang Y, Qi C, Zhao X, Zhang J, Zhang S, et al. 3D energetic metal–organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed Engl 2013;52(52):14031–5. link1

[22] Zhang J, Du Y, Dong K, Su H, Zhang S, Li S, et al. Taming dinitramide anions within an energetic metal–organic framework: a new strategy for synthesis and tunable properties of high energy materials. Chem Mater 2016;28 (5):1472–80. link1

[23] Xu JG, Sun C, Zhang MJ, Liu BW, Li XZ, Lu J, et al. Coordination polymerization of metal azides and powerful nitrogen-rich ligand toward primary explosives with excellent energetic performances. Chem Mater 2017;29(22):9725–33. link1

[24] Xu Y, Wang Q, Shen C, Lin Q, Wang P, Lu M. A series of energetic metal pentazolate hydrates. Nature 2017;549(7670):78–81. link1

[25] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012;338(6107):643–7. link1

[26] Wu Y, Shaker S, Brivio F, Murugavel R, Bristowe PD, Cheetham AK. [Am]Mn(H2POO)3: a new family of hybrid perovskites based on the hypophosphite ligand. J Am Chem Soc 2017;139(47):16999–7002. link1

[27] Ye HY, Tang YY, Li PF, Liao WQ, Gao JX, Hua XN, et al. Metal-free threedimensional perovskite ferroelectrics. Science 2018;361(6398):151–5. link1

[28] Du ZY, Zhao YP, Zhang WX, Zhou HL, He CT, Xue W, et al. Above-roomtemperature ferroelastic phase transition in a perovskite-like compound [N(CH3)4][Cd(N3)3]. Chem Commun 2014;50(16):1989–91. link1

[29] Xu WJ, Li PF, Tang YY, Zhang WX, Xiong RG, Chen XM, et al. A molecular perovskite with switchable coordination bonds for high-temperature multiaxial ferroelectrics. J Am Chem Soc 2017;139(18):6369–75. link1

[30] Szafran´ ski M. Synthesis, crystal structures, and phase transitions of dabco oxonium triperchlorate and tritetrafluoroborate. Cryst Growth Des 2018;18 (11):7106–13. link1

[31] Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017;356(6345):1376–9. link1

[32] Chen SL, Yang ZR, Wang BJ, Shang Y, Sun LY, He CT, et al. Molecular perovskite high-energetic materials. Sci China Mater 2018;61(8):1123–8. link1

[33] Zhang WX, Chen SL, Chen XM, inventors; Wanhuida Law Firm, assignee. Use of type of compounds as energetic material. China patent CN201610665880.3. 2016 Aug 12. Chinese.

[34] Chen SL, Zhang WX, Chen XM. Exceptional thermal energy storage in a series of perovskite-type perchlorate cage compounds: [H14C6N2][M(ClO4)3] (M = Na/ K/Rb). In: Proceedings of the 9th National Conference in Inorganic Chemistry— B Coordination Chemistry; 2015 Jul 25–29; Nanchang, China. Beijing: Chinese Chemical Society; 2015. Chinese.

[35] Chen SL, Shang Y, He CT, Sun LY, Ye ZM, Zhang WX, et al. Optimizing the oxygen balance by changing the A-site cations in molecular perovskite highenergetic materials. Cryst Eng Comm 2018;20(46):7458–63. link1

[36] Li X, Hu S, Cao X, Hu L, Deng P, Xie Z. Ammonium perchlorate-based molecular perovskite energetic materials: preparation, characterization, and thermal catalysis performance with MoS2. J Energ Mater 2020;38(2):162–9. link1

[37] Deng P, Ren H, Jiao Q. Enhanced the combustion performances of ammonium perchlorate-based energetic molecular perovskite using functionalized graphene. Vacuum 2019;169:108882. link1

[38] Zhou J, Ding L, Zhao F, Wang B, Zhang J. Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4(ClO4)3]. Chin Chem Lett 2019;31 (2):554–8. link1

[39] Fershtat LL, Makhova NN. 1,2,5-Oxadiazole-based high-energy-density materials: synthesis and performance. ChemPlusChem 2020;85(1):13–42. link1

[40] Xu J, Zheng S, Huang S, Tian Y, Liu Y, Zhang H, et al. Host-guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. Chem Commun 2019;55(7):909–12. link1

[41] Shang Y, Huang RK, Chen SL, He CT, Yu ZH, Ye ZM, et al. Metal-free molecular perovskite high-energetic materials. Cryst Growth Des 2020;20(3):1891–7. link1

[42] Wang SS, Chen XX, Huang B, Huang RK, Zhang WX, Chen XM. Unique freezing dynamics of flexible guest cations in the first molecular postperovskite ferroelectric: (C5H13NBr)[Mn(N(CN)2)3]. CCS Chem 2019;1(4):448–54. link1

[43] Zhang J, Mitchell LA, Parrish DA, Shreeve JM. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J Am Chem Soc 2015;137(33):10532–5. link1

[44] Zhang J, Zhang Q, Vo TT, Parrish DA, Shreeve JM. Energetic salts with pstacking and hydrogen-bonding interactions lead the way to future energetic materials. J Am Chem Soc 2015;137(4):1697–704. link1

[45] Svane KL, Forse AC, Grey CP, Kieslich G, Cheetham AK, Walsh A, et al. How strong is the hydrogen bond in hybrid perovskites? J Phys Chem Lett 2017;8 (24):6154–9. link1

[46] Kieslich G, Forse AC, Sun S, Butler KT, Kumagai S, Wu Y, et al. Role of aminecavity interactions in determining the structure and mechanical properties of the ferroelectric hybrid perovskite [NH3NH2]Zn(HCOO)3. Chem Mater 2016;28 (1):312–7. link1

[47] Liu B, Shang R, Hu KL, Wang ZM, Gao S. A new series of chiral metal formate frameworks of [HONH3][M(II)(HCOO)3] (M = Mn, Co, Ni, Zn, and Mg): synthesis, structures, and properties. Inorg Chem 2012;51(24):13363–72. link1

[48] Trzmiel J, Sieradzki A, Pawlus S, Ma˛czka M. Insight into understanding structural relaxation dynamics of [NH2NH3][Mn(HCOO)3] metal–organic formate. Mater Sci Eng B 2018;236–237:24–31. link1

[49] Tenuta E, Zheng C, Rubel O. Thermodynamic origin of instability in hybrid halide perovskites. Sci Rep 2016;6(1):37654. link1

[50] Kieslich G, Sun S, Cheetham AK. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci 2014;5 (12):4712–5. link1

Related Research