Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 9 doi: 10.1016/j.eng.2020.05.019

Review of the Current Synthesis and Properties of Energetic Pentazolate and Derivatives Thereof

Department of Materials Engineering & Department of Mechanical Engineering & Purdue Energetics Research Center, Purdue University, West Lafayette, IN 47907, USA

Received: 2019-12-30 Revised: 2020-04-15 Accepted: 2020-05-27 Available online: 2020-08-31

Next Previous

Abstract

The latest member of the azole family, the pentazolate or cyclo-N5, has received increased attention since its first mass-spectral detection by Christe et al. in 2002. As it is carbon- and hydrogen-free, the pentazolate anion can release large amounts of energy while simultaneously decomposing to environmentally friendly nitrogen gas. Due to these attractive qualities, cyclo-N5 and related compounds are essential in the advancement of high-energy-density materials (HEDMs) research. This review aims to provide a consolidated report on all research done on cyclo-N5, with a focus on pentazoles as energetic materials and on their experimental synthesis. Included in this review are the following: ① the historical significance of cyclo-N5; ② precursors of cyclo-N5; ③ synthesis routes of cyclo-N5 with a focus on arylpentazole precursors; ④ factors affecting the stability of cyclo-N5; ⑤ energetic performances of current energetic cyclo-N5-containing compounds; and ⑥ future possible experimental research. This review is a comprehensive summary of the current understanding of cyclo-N5, in an effort to further understand the potential of this anion for adoption as a powerful and environmentally friendly next-generation explosive.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

References

[ 1 ] Klapötke TM. Chemistry of high-energy materials. 2nd ed. Berlin: De Gruyter; 2012. link1

[ 2 ] Wang P, Xu Y, Lin Q, Lu M. Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5 and its derivatives. Chem Soc Rev 2018;47(20):7522–38. link1

[ 3 ] Klapötke TM, Petermayer C, Piercey DG, Stierstorfer J. 1,3-bis(nitroimido)- 1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials. J Am Chem Soc 2012;134(51):20827–36. link1

[ 4 ] Christe KO. Recent advances in the chemistry of N5 + , N5 , and high-oxygen compounds. Propellants Explos Pyrotech 2007;32(3):194–204. link1

[ 5 ] Christe KO, Wilson WW, Sheehy JA, Boatz JA. N5 + : a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 1999;38(13–14):2004–9. link1

[ 6 ] Curtius T. Ueber Stickstoffwasserstoffsäure (Azoimid) N3H. Ber Dtsch Chem Ges 1890;23(2):3023–33. German. link1

[ 7 ] Gagliardi L, Orlandi G, Evangelisti S, Roos BO. A theoretical study of the nitrogen clusters formed from the ions N3 , N5 + , and N5 . J Chem Phys 2001;114(24):10733–7. link1

[ 8 ] Dixon DA, Feller D, Christe KO, Wilson WW, Vij A, Vij V, et al. Enthalpies of formation of gas-phase N3, N3 , N5 + , and N5 from ab initio molecular orbital theory, stability predictions for N5 + N3 and N5 + N5 , and experimental evidence for the instability of N5 + N3 . J Am Chem Soc 2004;126(3):834–43. link1

[ 9 ] Nguyen MT, McGinn MA, Hegarty AF, Elguéro J. Can the pentazole anion (N5 ) be isolated and/or trapped in metal complexes? Polyhedron 1985;4 (10):1721–6. link1

[10] Nguyen MT. Polynitrogen compounds: 1. structure and stability of N4 and N5 systems. Coord Chem Rev 2003;244(1–2):93–113. link1

[11] Klapötke TM, Hammerl A. Pentazoles. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK, editors. Comprehensive heterocyclic chemistry III. Oxford: Elsevier; 2008. p. 739–57. link1

[12] Bazanov B, Geiger U, Carmieli R, Grinstein D, Welner S, Haas Y. Detection of cyclo-N5 in THF solution. Angew Chem Int Ed 2016;55(42):13233–5. link1

[13] Zhang C, Sun C, Hu B, Yu C, Lu M. Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 2017;355 (6323):374–6. link1

[14] Xu Y, Wang Q, Shen C, Lin Q, Wang P, Lu M. A series of energetic metal pentazolate hydrates. Nature 2017;549(7670):78–81. Erratum in: Nature 2018;559:E5. link1

[15] Xu Y, Wang P, Lin Q, Lu M. A carbon-free inorganic–metal complex consisting of an all-nitrogen pentazole anion, a Zn(II) cation and H2O. Dalton Trans 2017;46(41):14088–93. link1

[16] Xu Y, Wang P, Lin Q, Mei X, Lu M. Self-assembled energetic 3D metal–organic framework [Na8(N5)8(H2O)3]n based on cyclo-N5 . Dalton Trans 2018;47 (5):1398–401. link1

[17] Zhang C, Yang C, Hu B, Yu C, Zheng Z, Sun C. A symmetric Co(N5)2(H2O)4∙4H2O high-nitrogen compound formed by cobalt(II) cation trapping of a cyclo-N5 anion. Angew Chem Int Ed Engl 2017;56(16):4512–4. link1

[18] Zhang W, Wang K, Li J, Lin Z, Song S, Huang S, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew Chem Int Ed 2018;57(10):2592–5. link1

[19] Xu Y, Lin Q, Wang P, Lu M. Stabilization of the pentazolate anion in three anhydrous and metal-free energetic salts. Chem Asian J 2018;13(8):924–8. link1

[20] Yang C, Zhang C, Zheng Z, Jiang C, Luo J, Du Y, et al. Synthesis and characterization of cyclo-pentazolate salts of NH4 + , NH3OH+ , N2H5 + , C(NH2)3 + , and N(CH3)4 + . J Am Chem Soc 2018;140(48):16488–94. link1

[21] Xu Y, Tian L, Li D, Wang P, Lu M. A series of energetic cyclo-pentazolate salts: rapid synthesis, characterization, and promising performance. J Mater Chem A Mater Energy Sustain 2019;7(20):12468–79. link1

[22] Tian L, Xu Y, Lin Q, Wang P, Lu M. Syntheses of energetic cyclo-pentazolate salts. Chem Asian J 2019;14(16):2877–82. link1

[23] Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO. Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem Int Ed 2002;41(16):3051–4. link1

[24] Ren G, Liu R, Zhou P, Zhang C, Liu J, Han K. Theoretical perspective on the reaction mechanism from arylpentazenes to arylpentazoles: new insights into the enhancement of cyclo-N5 production. Chem Commun (Camb) 2019;55 (18):2628–31. link1

[25] Burke LA, Fazen PJ. Correlation analysis of the interconversion and nitrogen loss reactions of aryl pentazenes and pentazoles derived from aryl diazonium and azide ions. Int J Quantum Chem 2009;109(15):3613–8. link1

[26] Ek S, Rehn S, Wahlström LY, Östmark H. Synthesis and characterization of eight arylpentazoles. J Heterocycl Chem 2013;50(2):261–7. link1

[27] Carlqvist P, Östmark H, Brinck T. The stability of arylpentazoles. J Phys Chem A 2004;108(36):7463–7. link1

[28] Zhang C, Sun C, Hu B, Lu M. Investigation on the stability of multisubstituted arylpentazoles and the influence on the generation of pentazolate anion. J Energy Mater 2016;34(1):103–11. link1

[29] Zhang X, Yang J, Lu M, Gong X. Theoretical studies on the stability of phenylpentazole and its substituted derivatives of –OH, –OCH3, –OC2H5 and –N(CH3)2. RSC Adv 2014;4(99):56095–101. link1

[30] Noelting E, Grandmougin E, Michel O. Ueber die Bildung von Stickstoffwasserstoffsäure (Azoimid) aus aromatischen Azoimiden. Ber Dtsch Chem Ges 1892;25(2):3328–42. German. link1

[31] Clusius K, Hürzeler H. Reaktionen mit 15N. XII. Mechanismus der Phenylazidbildung bei der Diazoreaktion. Helv Chim Acta 1954;37 (3):798–804. German. link1

[32] Ugi I. Pentazoles. In: Katritzky AR, editor. Advances in heterocyclic chemistry. San Diego: Academic Press; 1964. p. 373–83. link1

[33] Huisgen R, Ugi I. Zur Lösung eines klassischen Problems der organischen Stickstoff-Chemie. Angew Chem 1956;68(22):705–6. German. link1

[34] Wallis JD, Dunitz JD. An all-nitrogen aromatic ring system: structural study of 4-dimethyl-aminophenylpentazole. J Chem Soc Chem Commun 1983;16:910–1. link1

[35] Yang YZ, Li YC, Zhang RB, Sun CH, Pang SP. Thermal stability of pdimethylaminophenylpentazole. RSC Adv 2014;4(101):57629–34. link1

[36] Zhang X, Gong X. Theoretical investigations on the stability of alkali metal substituted phenylpentazole. J Mol Model 2016;22:106. link1

[37] Zhang X, Ma C, Zhang Y, Liu G. Screening benzylpentazoles for replacing PhN5 as cyclo-N5 precursor by theoretical calculation. Struct Chem 2018;29 (1):267–74. link1

[38] Scheit KH, Kampe W. Synthesis of benzaldehydes by diazotization of benzylamines in dimethyl sulfoxide. Angew Chem Int Ed 1965;4(9):787. link1

[39] Hammerl A, Klapötke TM. Tetrazolylpentazoles: nitrogen-rich compounds. Inorg Chem 2002;41(4):906–12. link1

[40] Zhang X, Yang J, Lu M, Gong X. Pyridylpentazole and its derivatives: a new source of N5 ? RSC Adv 2015;5(35):27699–705. link1

[41] Liang YH, Luo Q, Guo M, Li QS. What are the roles of N3 and N5 rings in designing polynitrogen molecules? Dalton Trans 2012;41(39):12075–81. link1

[42] Noyman M, Zilberg S, Haas Y. Stability of polynitrogen compounds: the importance of separating the r and p electron systems. J Phys Chem A 2009;113(26):7376–82. link1

[43] Yang J, Gong X, Wang G. Structure, energetic performance, and decomposition mechanism of four azidoazoles. Struct Chem 2015;26(4):1077–82. link1

[44] Rahm M, Brinck T. Kinetic stability and propellant performance of green energetic materials. Chemistry 2010;16(22):6590–600. link1

[45] Pimienta ISO, Elzey S, Boatz JA, Gordon MS. Pentazole-based energetic ionic liquids: a computational study. J Phys Chem A 2007;111(4):691–703. link1

[46] Hammerl A, Klapötke TM, Schwerdtfeger P. Azolylpentazoles as high-energy materials: a computational study. Chemistry 2003;9(22):5511–9. link1

[47] Christe KO. Polynitrogen chemistry enters the ring. Science 2017;355 (6323):351. link1

[48] Glukhovtsev MN, Jiao H, von Ragué SP. Besides N2, what is the most stable molecule composed only of nitrogen atoms? Inorg Chem 1996;35 (24):7124–33. link1

[49] Frison G, Jacob G, Ohanessian G. Guiding the synthesis of pentazole derivatives and their mono- and di-oxides with quantum modeling. New J Chem 2013;37 (3):611–8. link1

[50] Wu X, Liu Z, Zhu W. Molecular design of all nitrogen pentazole-based high energy density compounds with oxygen balance equal to zero. J Chin Chem Soc 2019;66(4):377–84. link1

[51] Östmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, et al. Detection of pentazolate anion (cyclo-N5 ) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem Phys Lett 2003;379(5–6):539–46. link1

[52] Belau L, Haas Y, Zilberg S. Formation of the cyclo-pentazolate N5 anion by high-energy dissociation of phenylpentazole anions. J Phys Chem A 2004;108 (52):11715–20. link1

[53] Portius P, Davis M, Campbell R, Hartl F, Zeng Q, Meijer AJHM, et al. Dinitrogen release from arylpentazole: a picosecond time-resolved infrared, spectroelectrochemical, and DFT computational study. J Phys Chem A 2013;117(48):12759–69. link1

[54] Geiger U, Elyashiv A, Fraenkel R, Zilberg S, Haas Y. The Raman spectrum of dimethylaminophenyl pentazole (DMAPP). Chem Phys Lett 2013;556:127–31. link1

[55] Bazanov B, Haas Y. Solution photochemistry of [p-(dimethylamino)phenyl] pentazole (DMAPP) at 193 and 300 nm. J Phys Chem A 2015;119(11):2661–71. link1

[56] Geiger U, Haas Y. Photochemistry of aryl pentazoles: paramethoxyphenylpentazole. J Phys Chem B 2015;119(24):7338–48. link1

[57] Geiger U, Haas Y. Preparation of the cyclopentazole anion in the bulk: a computational study. J Phys Chem B 2016;120(26):6208–14. link1

[58] Butler RN, Stephens JC, Burke LA. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: a new N-dearylation of 1-(p-methoxyphenyl) pyrazoles, a 2-(p-methoxyphenyl) tetrazole and application of the methodology to 1-(p-methoxyphenyl) pentazole. Chem Commun (Camb) 2003;8:1016–7. link1

[59] Schroer T, Haiges R, Schneider S, Christe KO. The race for the first generation of the pentazolate anion in solution is far from over. Chem Commun (Camb) 2005;12:1607–9. link1

[60] Butler RN, Hanniffy JM, Stephens JC, Burke LA. A ceric ammonium nitrate Ndearylation of N-p-anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. Generation of unstable pentazole, HN5/N5 , in solution. J Org Chem 2008;73(4):1354–64. link1

[61] Bazanov B, Geiger U, Grinstein D, Welner S, Haas Y. N5 in solution: isotopic labeling and further details of its synthesis by phenyl pentazole reduction. J Phys Chem A 2017;121(36):6727–31. link1

[62] Huang RY, Xu H. Comment on ‘‘Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl”. Science 2018;359 (6381):eaao3672. link1

[63] Jiang C, Zhang L, Sun C, Zhang C, Yang C, Chen J, et al. Response to comment on ‘‘Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl”. Science 2018;359(6381):aas8953. link1

[64] Chen W, Liu Z, Zhao Y, Yi X, Chen Z, Zheng A. To be or not to be protonated: cyclo-N5 in crystal and solvent. J Phys Chem Lett 2018;9(24):7137–45. link1

[65] Huang H, Zhong J, Ma L, Lv L, Francisco JS, Zeng XC. Reconciling the debate on the existence of pentazole HN5 in the pentazolate salt of (N5)6(H3O)3(NH4)4Cl. J Am Chem Soc 2019;141(7):2984–9. link1

[66] Yu T, Ma YD, Lai WP, Liu YZ, Ge ZX, Ren G. Roads to pentazolate anion: a theoretical insight. R Soc Open Sci 2018;5(5):172269. link1

[67] Shang F, Liu R, Liu J, Zhou P, Zhang C, Yin S, et al. Unraveling the mechanism of cyclo-N5 production through selective C–N bond cleavage of arylpentazole with ferrous bisglycinate and m-chloroperbenzonic acid: a theoretical perspective. J Phys Chem Lett 2020;11(3):1030–7. link1

[68] Steele BA, Oleynik II. Sodium pentazolate: a nitrogen rich high energy density material. Chem Phys Lett 2016;643:21–6. link1

[69] Steele BA, Stavrou E, Crowhurst JC, Zaug JM, Prakapenka VB, Oleynik II. Highpressure synthesis of a pentazolate salt. Chem Mater 2017;29(2):735–41. link1

[70] Williams AS, Steele BA, Oleynik II. Novel rubidium poly-nitrogen materials at high pressure. J Chem Phys 2017;147(23):234701. link1

[71] Steele BA, Oleynik II. Pentazole and ammonium pentazolate: crystalline hydronitrogens at high pressure. J Phys Chem A 2017;121(8):1808–13. link1

[72] Laniel D, Weck G, Gaiffe G, Garbarino G, Loubeyre P. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J Phys Chem Lett 2018;9(7):1600–4. link1

[73] Laniel D, Weck G, Loubeyre P. Direct reaction of nitrogen and lithium up to 75 GPa: synthesis of the Li3N, LiN, LiN2, and LiN5 compounds. Inorg Chem 2018;57 (17):10685–93. link1

[74] Li J, Sun L, Wang X, Zhu H, Miao M. Simple route to metal cyclo-N5 salt: highpressure synthesis of CuN5. J Phys Chem C 2018;122(39):22339–44. link1

[75] Xia K, Zheng X, Yuan J, Liu C, Gao H, Wu Q, et al. Pressure-stabilized highenergy-density alkaline-earth-metal pentazolate salts. J Phys Chem C 2019;123(16):10205–11. link1

[76] Yang C, Sun C, Zhang C, Hu B. Direct formation of [NH4]N3 from a pentazolate salt through single-crystal to single-crystal transformation. Inorg Chim Acta 2018;474:144–7. link1

[77] Xu Y, Lin Q, Wang P, Lu M. Syntheses, crystal structures and properties of a series of 3D metal–inorganic frameworks containing pentazolate anion. Chem Asian J 2018;13(13):1669–73. link1

[78] Luo JH, Chen LY, Nguyen DN, Guo DZ, An Q, Cheng MJ. Dual functions of water in stabilizing metal–pentazolate hydrates [M(N5)2(H2O)4]4H2O (M = Mn, Fe Co, and Zn) high-energy-density materials. J Phys Chem C 2018;122 (37):21192–201. link1

[79] Xu Y, Tian L, Wang P, Lin Q, Lu M. Hydrogen bonding network: stabilization of the pentazolate anion in two nonmetallic energetic salts. Cryst Growth Des 2019;19(3):1853–9. link1

[80] Zhang L, Yao C, Yu Y, Jiang SL, Sun CQ, Chen J. Stabilization of the dual-aromatic cyclo-N5 anion by acidic entrapment. J Phys Chem Lett 2019;10(10):2378–85. link1

[81] Wang PC, Xu YG, Wang Q, Shao YL, Lin QH, Lu M. Self-assembled energetic coordination polymers based on multidentate pentazole cyclo-N5 – . Sci China Mater 2019;62(1):122–9. link1

[82] Qin H, Zhu SH, Gan YD, Zhong M, Jiang CL, Hong D, et al. The Raman and IR vibration modes of metal pentazolate hydrates [Na(H2O)(N5)]2H2O and [Mg(H2O)6(N5)2]4H2O. J Mol Model 2020;26(4):84. link1

[83] Tang L, Guo H, Peng J, Ning P, Li K, Li J, et al. Structure and bonding of novel paddle-wheel diiridium polynitrogen compounds: a stronger iridium–iridium bonding by density functional theory. J Organomet Chem 2014;769:94–9. link1

[84] Burke LA, Butler RN, Stephens JC. Theoretical characterization of pentazole anion with metal counter ions. Calculated and experimental 15N shifts of aryldiazonium, -azide and -pentazole systems. J Chem Soc Perkin Trans 2 2001;9:1679–84. link1

[85] Zhang X, Yang J, Lu M, Gong X. Structure, stability and intramolecular interaction of M(N5)2 (M = Mg, Ca, Sr and Ba): a theoretical study. RSC Adv 2015;5(28):21823–30. link1

[86] Tsipis AC, Chaviara AT. Structure, energetics, and bonding of first row transition metal pentazolato complexes: a DFT study. Inorg Chem 2004;43 (4):1273–86. 9 link1

[87] Arhangelskis M, Katsenis AD, Morris AJ, Frišcˇic´ T. Computational evaluation of metal pentazolate frameworks: inorganic analogues of azolate metal–organic frameworks. Chem Sci (Camb) 2018;9(13):3367–75. link1

[88] Straka M, Pyykkö P. One metal and forty nitrogens. Ab initio predictions for possible new high-energy pentazolides. Inorg Chem 2003;42(25):8241–9. link1

[89] Choi C, Yoo HW, Goh EM, Cho SG, Jung Y. Ti(N5)4 as a potential nitrogen-rich stable high-energy density material. J Phys Chem A 2016;120(24):4249–55. link1

[90] Lein M, Frunzke J, Timoshkin A, Frenking G. Iron bispentazole Fe(g5 -N5)2, a theoretically predicted high-energy compound: structure, bonding analysis, metal–ligand bond strength and a comparison with the isoelectronic ferrocene. Chemistry 2001;7(19):4155–63. link1

[91] Gagliardi L, Pyykkö P. g5 -N5 – –metal–g7 -N7 3–: a new class of compounds. J Phys Chem A 2002;106(18):4690–4. link1

[92] Wang P, Lin Q, Xu Y, Lu M. Pentazole anion cyclo-N5 – : a rising star in nitrogen chemistry and energetic materials. Sci China Chem 2018;61(11):1355–8. link1

[93] Li J, Wang K, Song S, Qi X, Zhang W, Deng M, et al. [LiNa(N5)2(H2O)4]H2O: a novel heterometallic cyclo-N5 – framework with helical chains. Sci China Mater 2019;62(2):283–8. link1

[94] Christe KO, Dixon DA, Vasiliu M, Haiges R, Hu B. How energetic are cyclopentazolates? Propellants Explos Pyrotech 2019;44(3):263–6. link1

[95] Sun C, Zhang C, Jiang C, Yang C, Du Y, Zhao Y, et al. Synthesis of AgN5 and its extended 3D energetic framework. Nat Commun 2018;9(1):1269. link1

Related Research