Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 9 doi: 10.1016/j.eng.2020.06.019

Novel X-ray and Optical Diagnostics for Studying Energetic Materials: A Review

a The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031, China
b School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

Received: 2020-04-06 Revised: 2020-05-25 Accepted: 2020-06-03 Available online: 2020-08-11

Next Previous

Abstract

Thermomechanical, physical, and chemical processes in energetic materials (EMs) during manufacturing and processing or under external stimuli such as shock compression, involve multiple temporal and spatial scales. Discovering novel phenomena, acquiring new data, and understanding underlying mechanisms all require temporally and spatially resolved diagnostics. Here, we present a brief review of novel diagnostics that are either emerging or have existed but rarely been applied to EMs, including two-dimensional (2D) and three-dimensional (3D) X-ray imaging, X-ray diffraction, coherent X-ray diffraction imaging, small angle X-ray scattering, terahertz and optical absorption/emission spectroscopy, and one-dimensional (1D) and 2D laser-based velocity/displacement interferometry. Typical spatial scales involved are lattice (nanometer and micrometer) and typical temporal scales (femtosecond, picosecond, nanosecond, microsecond, and millisecond). The targeted scientific questions and engineering problems include defects, strengths, deformations, hot spots, phase changes, reactions, and shock sensitivities. Basic principles of measurement and data analysis, and illustrative examples of these are presented. Advanced measurements and experimental complexities also necessitate further development in corresponding data analysis and interpretation methodologies, and multiscale modeling

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Rice BM. Overview of research in energetic materials. In: Politzer P, Murray JS, editors. Energetic materials: Part 1. Decomposition, crystal and molecular properties. Amsterdan: Elsevier; 2003. p. 1–3. link1

[ 2 ] Manaa MR. Initiation and decomposition mechanisms of energetic materials. In: Politzer P, Murray JS, editors. Energetic materials: Part 2. Detonation, combustion. Amsterdan: Elsevier; 2003. p. 71–100. link1

[ 3 ] Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 2008;151(2–3):289–305. link1

[ 4 ] Zhang W, Zhang J, Deng M, Qi X, Nie F, Zhang Q. A promising high-energydensity material. Nat Commun 2017;8(1):1–7. link1

[ 5 ] Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Hoboken: John Wiley and Sons Ltd.; 2010. link1

[ 6 ] Handley CA, Lambourn BD, Whitworth NJ, James HR, Belfield WJ. Understanding the shock and detonation response of high explosives at the continuum and meso scales. Appl Phys Rev 2018;5(1):011303. link1

[ 7 ] Bennett JG, Haberman KS, Johnson JN, Asay BW. A constitutive model for the non-shock ignition and mechanical response of high explosives. J Mech Phys Solids 1998;46(12):2303–22. link1

[ 8 ] Dlott DD. New developments in the physical chemistry of shock compression. Annu Rev Phys Chem 2011;62(1):575–97. link1

[ 9 ] Yeager JD, Luo SN, Jensen BJ, Fezzaa K, Montgomery DS, Hooks DE. High-speed synchrotron X-ray phase contrast imaging for analysis of low-Z composite microstructure. Compos Part A Appl S 2012;43(6):885–92. link1

[10] Smirnov E, Muzyrya A, Kostitsyn O, Badretdinova LC, Ten K, Pruuel E, et al. Investigation of micro-, meso-, and macrostructure of the condensed heterogeneous explosives using synchrotron radiation. Bull Russ Acad Sci Phys 2015;79(1):20–5. link1

[11] Liu Y, Xu J, Huang S, Li S, Wang Z, Li J, et al. Microstructure and performance of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystal clusters obtained by the solvation-desolvation process. J Energy Mater 2019;37 (3):282–92. link1

[12] Zhang J, Jackson TL. Effect of microstructure on the detonation initiation in energetic materials. Shock Waves 2019;29(2):327–38. link1

[13] Field JE. Hot spot ignition mechanisms for explosives. Acc Chem Res 1992;25 (11):489–96. link1

[14] Field JE, Bourne NK, Palmer SJP, Walley SM. Hotspot ignition mechanisms for explosives and propellants. Philos Trans R Soc London Ser A Phys Eng Sci 1992;339(1654):269–83. link1

[15] An Q, Zybin SV, Goddard WA, Jaramillo-Botero A, Blanco M, Luo SN. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Phys Rev B Condens Matter Mater Phys 2011;84 (22):220101. link1

[16] You S, Chen MW, Dlott DD, Suslick KS. Ultrasonic hammer produces hot spots in solids. Nat Commun 2015;6(1):6581. link1

[17] Halfpenny PJ, Roberts KJ, Sherwood JN. Dislocations in energetic materials. J Mater Sci 1984;19(5):1629–37. link1

[18] Cawkwell MJ, Ramos KJ, Hooks DE, Sewell TD. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading. J Appl Phys 2010;107(6):063512. link1

[19] Ciezak JA, Jenkins TA. The low-temperature high pressure phase diagram of energetic materials: I. hexahydro-1,3,5-trinitro-s-triazine. Propell Explos Pyrot 2008;33(5):390–5. link1

[20] Willey TM, Lauderbach L, Gagliardi F, Van Buuren T, Glascoe EA, Tringe JW, et al. Mesoscale evolution of voids and microstructural changes in HMXbased explosives during heating through the β-δ phase transition. J Appl Phys 2015;118(5):055901. link1

[21] Adams GF, Shaw Jr RW. Chemical reactions in energetic materials. Annu Rev Phys Chem 1992;43(1):311–40. link1

[22] Shaw MS, Johnson JD. Carbon clustering in detonations. J Appl Phys 1987;62 (5):2080–5. link1

[23] Greiner NR, Phillips DS, Johnson JD, Volk F. Diamonds in detonation soot. Nature 1988;333(6172):440–2. link1

[24] Ye S, Koshi M. Theoretical studies of energy transfer rates of secondary explosives. J Phys Chem B 2006;110(37):18515–20. link1

[25] Ye SJ, Tonokura K, Koshi M. Energy transfer rates and impact sensitivities of crystalline explosives. Combust Flame 2003;132(1–2):240–6. link1

[26] Tokmakoff A, Fayer MD, Dlott DD. Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials. J Phys Chem 1993;97 (9):1901–13. link1

[27] Fried LE, Ruggiero AJ. Energy transfer rates in primary, secondary, and insensitive explosives. J Phys Chem 1994;98(39):9786–91. link1

[28] McNesby KL, Coffey CS. Spectroscopic determination of impact sensitivities of explosives. J Phys Chem B 1997;101(16):3097–104. link1

[29] Bourne NK, Milne AM. Shock to detonation transition in a plastic bonded explosive. J Appl Phys 2004;95(5):2379–85. link1

[30] Rethfeld B, Sokolowski-Tinten K, Von Der Linde D, Anisimov S. Timescales in the response of materials to femtosecond laser excitation. Appl Phys A Mater Sci Process 2004;79(4–6):767–9. link1

[31] Harilal SS, Brumfield BE, Cannon BD, Phillips MC. Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas. Anal Chem 2016;88(4):2296–302. link1

[32] Luo SN, Akins JA, Ahrens TJ, Asimow PD. Shock compressed MgSiO3 glass, enstatite, olivine, and quartz: optical emission, temperatures, and melting. J Geophys Res 2004;109:B05205. link1

[33] Chen P, Huang F, Dai K, Ding Y. Detection and characterization of long-pulse low-velocity impact damage in plastic bonded explosives. Int J Impact Eng 2005;31(5):497–508. link1

[34] Hooks DE, Ramos KJ, Martinez AR. Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa. J Appl Phys 2006;100(2):024908. link1

[35] Parab ND, Roberts ZA, Harr MH, Mares JO, Casey AD, Gunduz IE, et al. High speed X-ray phase contrast imaging of energetic composites under dynamic compression. Appl Phys Lett 2016;109(13):131903. link1

[36] Zhao PD, Lu FY, Lin YL, Chen R, Li JL, Lu L. Technique for combined dynamic compression-shear testing of PBXs. Exp Mech 2012;52(2):205–13. link1

[37] Shi JC, Shang YL, Ye W, Zhang RT, Luo SN. Shock-tube experiments and chemical kinetic modeling study of CH4 sensitized by CH3NHCH3. Energy Fuels 2018;32(4):5588–95. link1

[38] Shang YL, Shi JC, Ning HB, Zhang RT, Wang HY, Luo SN. Ignition delay time measurements and kinetic modeling of CH4 initiated by CH3NO2. Fuel 2019;243:288–97. link1

[39] Wang X, Wu Y, Huang F. Thermal–mechanical–chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading. J Hazard Mater 2017;321(806):256–67. link1

[40] Oswald ID, Millar DI, Davidson AJ, Francis DJ, Marshall WG, Pulham CR, et al. High-pressure structural studies of energetic compounds. High Press Res 2010;30(2):280–91. link1

[41] Funk DJ, Calgaro F, Averitt RD, Asaki MLT, Taylor AJ. THz transmission spectroscopy and imaging: application to the energetic materials PBX 9501 and PBX 9502. Appl Spectrosc 2004;58(4):428–31. link1

[42] Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 2005;20(7):S266–80. link1

[43] Hua C, Zhang PJ, Lu XJ, Huang M, Dai B, Fu H. Research on the size of defects inside RDX/HMX crystal and shock sensitivity. Propell Explos Pyrot 2013;38 (6):775–80. link1

[44] Van der Heijden AEDM, Bouma RHB. Crystallization and characterization of RDX, HMX, and CL-20. Cryst Growth Des 2004;4(5):999–1007. link1

[45] Xiao Y, Sun Y, Zhen Y, Guo L, Yao L. Characterization, modeling and simulation of the impact damage for polymer bonded explosives. Int J Impact Eng 2017;103:149–58. link1

[46] Luo SN, Jensen BJ, Hooks DE, Fezzaa K, Ramos KJ, Yeager JD, et al. Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source. Rev Sci Instrum 2012;83 (7):073903. link1

[47] Baxter JB, Guglietta GW. Terahertz spectroscopy. Anal Chem 2011;83 (12):4342–68. link1

[48] Fan D, Lu L, Li B, Qi ML, Eisenstein JC, Zhao F, et al. Transient X-ray diffraction with simultaneous imaging under high strain-rate loading. Rev Sci Instrum 2014;85(11):113902. link1

[49] Seiboth F, Fletcher LB, McGonegle D, Anzellini S, Dresselhaus-Cooper LE, Frost M, et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl Phys Lett 2018;112(22):221907. link1

[50] Brown SB, Gleason AE, Galtier E, Higginbotham A, Arnold B, Fry A, et al. Direct imaging of ultrafast lattice dynamics. Sci Adv 2019;5(3):eaau8044. link1

[51] Zhang YY, Tang MX, Cai Y, Eisenstein JC, Luo SN. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction. J Synchrotron Radiat 2019;26(Pt 2):413–21. link1

[52] Czerski H, Proud WG. Relationship between the morphology of granular cyclotrimethylene-trinitramine and its shock sensitivity. J Appl Phys 2007;102(11):113515. link1

[53] An Q, Liu Y, Zybin SV, Kim H, Goddard WA. Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. J Phys Chem C 2012;116(18):10198–206. link1

[54] Hudspeth M, Sun T, Parab N, Guo Z, Fezzaa K, Luo S, et al. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading. J Synchrotron Radiat 2015;22(1):49–58. link1

[55] Brennan Brown S, Lee HJ, Nagler B, Galtier E, Xing Z, Gleason A, et al. Density measurements of dynamically-compressed, melting phase silicon via simultaneous in-situ X-ray diffraction and X-ray contrast imaging using the LCLS X-ray free electron laser at MEC. In: Proceedings of the 58th Annual Meeting of the APS Division of Plasma Physics; 2016 Oct 31–Nov 4; San Jose, CA, USA; 2016.

[56] Fan D, Huang JW, Zeng XL, Li Y, Eisenstein JC, Huang JY, et al. Simultaneous, single-pulse, synchrotron X-ray imaging and diffraction under gas gun loading. Rev Sci Instrum 2016;87(5):053903. link1

[57] Lu L, Huang JW, Fan D, Bie BX, Sun T, Fezzaa K, et al. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: a study with simultaneous in situ synchrotron X-ray imaging and diffraction. Acta Mater 2016;120:86–94. link1

[58] Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 1995;66(12):5486–92. link1

[59] Cloetens P, Barrett R, Baruchel J, Guigay JP, Schlenker M. Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys 1996;29 (1):133–46. link1

[60] Olinger B. Compacting plastic-bonded explosive molding powders to dense solids. Tech Report. Los Alamos: Los Alamos National Laboratory; 2005. Apr. Report No.:LA-14173. link1

[61] Paulson SC, Roberts ZA, Sorensen CJ, Kerschen NE, Harr MH, Parab ND, et al. Observation of damage during dynamic compression of production and lowdefect HMX crystals in Sylgard binder using X-ray phase contrast imaging. J Dyn Behav Mater 2020;6(1):34–44. link1

[62] Kerschen NE, Sorensen CJ, Guo Z, Mares JO, Fezzaa K, Sun T, et al. X-Ray phase contrast imaging of the impact of a single HMX particle in a polymeric matrix. Propell Explos Pyrot 2019;44(4):447–54. link1

[63] Kerschen NE, Drake JD, Sorensen CJ, Guo Z, Mares JO, Fezzaa K, et al. X-ray phase contrast imaging of the impact of multiple HMX particles in a polymeric matrix. Propell Explos Pyrot 2020;45(4):607–14. link1

[64] Lu L, Fan D, Bie BX, Ran XX, Qi ML, Parab N, et al. Note: dynamic strain field mapping with synchrotron X-ray digital image correlation. Rev Sci Instrum 2014;85(7):076101. link1

[65] Huang JY, Lu L, Fan D, Sun T, Fezzaa K, Xu SL, et al. Heterogeneity in deformation of granular ceramics under dynamic loading. Scr Mater 2016;111:114–8. link1

[66] Wang BR, Sun T, Fezzaa K, Huang JY, Luo SN. Rate-dependent deformation and Poisson’s effect in porous titanium. Mater Lett 2019;245:134–7. link1

[67] Pan B. Recent progress in digital image correlation. Exp Mech 2011;51 (7):1223–35. link1

[68] Wu SY, Bie BX, Fan D, Sun T, Fezzaa K, Feng ZD, et al. Dynamic shear localization of a titanium alloy under high-rate tension characterized by Xray digital image correlation. Mater Charact 2018;137:58–66. link1

[69] Bie BX, Huang JY, Su B, Lu L, Fan D, Eisenstein JC, et al. Dynamic tensile deformation and damage of B4C-reinforced Al composites: time-resolved imaging with synchrotron X-rays. Mater Sci Eng A 2016;664:86–93. link1

[70] Li HY, Chai HW, Xiao XH, Huang JY, Luo SN. Fractal breakage of porous carbonate sand particles: microstructures and mechanisms. Powder Technol 2020;363:112–21. link1

[71] Bie BX, Huang JY, Fan D, Sun T, Fezzaa K, Xiao XH, et al. Orientationdependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study. Carbon 2017;121:127–33. link1

[72] Chai HW, Xie ZL, Xiao XH, Xie HL, Huang JY, Luo SN. Microstructural characterization and constitutive modelling of deformation of closed-cell foams based on in situ X-ray tomography. Int J Plast 2020;131:102730. link1

[73] Sjödahl M, Siviour CR, Forsberg F. Digital volume correlation applied to compaction of granular materials. Procedia IUTAM 2012;4:179–95. link1

[74] Zhang WB, Huang H, Tian Y, Dai B. Characterization of RDX-based thermosetting plastic-bonded explosive by cone-beam microfocus computed tomography. J Energ Mater 2012;30(3):196–208. link1

[75] Manner VW, Yeager JD, Patterson BM, Walters DJ, Stull JA, Cordes NL, et al. In situ imaging during compression of plastic bonded explosives for damage modeling. Materials (Basel) 2017;10(6):638. link1

[76] Hu Z, Luo H, Bardenhagen SG, Siviour CR, Armstrong RW, Lu H. Internal deformation measurement of polymer bonded sugar in compression by digital volume correlation of in-situ tomography. Exp Mech 2015;55 (1):289–300. link1

[77] Yuan ZN, Chen H, Li JM, Dai B, Zhang WB. In-situ X-ray tomography observation of structure evolution in 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosive (TATB-PBX) under thermo-mechanical loading. Materials 2018;11(5):732. link1

[78] Chen L, Wu L, Liu Y, Chen W. In situ observation of void evolution in 1,3,5- triamino-2,4,6-trinitrobenzene under compression by synchrotron radiation X-ray nano-computed tomography. J Synchrotron Radiat 2020;27(Pt 1):127–33. link1

[79] Yao Y, Chai HW, Li C, Bie BX, Xiao XH, Huang JY, et al. Deformation and damage of sintered low-porosity aluminum under planar impact: microstructures and mechanisms. J Mater Sci 2018;53(6):4582–97. link1

[80] Pan B, Wu D, Wang Z. Internal displacement and strain measurement using digital volume correlation: a least-squares framework. Meas Sci Technol 2012;23(4):045002. link1

[81] García-Moreno F, Kamm PH, Neu TR, Bülk F, Mokso R, Schlepütz CM, et al. Using X-ray tomoscopy to explore the dynamics of foaming metal. Nat Commun 2019;10(1):3762. link1

[82] Baker DR, Brun F, O’Shaughnessy C, Mancini L, Fife JL, Rivers M, et al. A fourdimensional X-ray tomographic microscopy study of bubble growth in basaltic foam. Nat Commun 2012;3(1):1135. link1

[83] Nommeots-Nomm A, Ligorio C, Bodey A, Cai B, Jones JR, Lee PD, et al. Fourdimensional imaging and quantification of viscous flow sintering within a 3D printed bioactive glass scaffold using synchrotron X-ray tomography. Mater Today Adv 2019;2:100011. link1

[84] Sloof WG, Pei R, McDonald SA, Fife JL, Shen L, Boatemaa L, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron Xray tomographic microscopy. Sci Rep 2016;6(1):23040. link1

[85] Lu X, Fernández MP, Bradley RS, Rawson SD, O’Brien M, Hornberger B, et al. Anisotropic crack propagation and deformation in dentin observed by fourdimensional X-ray nano-computed tomography. Acta Biomater 2019;96:400–11. link1

[86] White DJ, Take WA, Bolton MD. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 2003;53 (7):619–31. link1

[87] Parker G, Bourne N, Eastwood D, Jacques S, Dickson P, Lopez-Pulliam I, et al. 4D imaging in thermally damaged polymer-bonded explosives. In: Proceedings of the 20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter; 2017 Jul 9–14; St. Louis, MO, USA; 2017.

[88] Zellner MB, Champley K. Development of a computed tomography system capable of tracking high-velocity unbounded material through a reconstruction volume. Int J Impact Eng 2019;129:26–35. link1

[89] Walters DJ, Luscher DJ, Yeager JD, Patterson BM. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading. Int J Mech Sci 2018;140:151–62. link1

[90] Hu R, Prakash C, Tomar V, Harr M, Gunduz IE, Oskay C. Experimentallyvalidated mesoscale modeling of the coupled mechanical–thermal response of AP–HTPB energetic material under dynamic loading. Int J Fract 2017;203 (1–2):277–98. link1

[91] Huang JH, Lu SJ, Xie FY, Liu W, Xiao CW, Zhang JJ, et al. Finite element analysis of synergetic deformation in precision cutting of polymer bonded explosive. Mater Des 2020;188:108471. link1

[92] Harewood FJ, McHugh PE. Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput Mater Sci 2007;39 (2):481–94. link1

[93] Henning GF. Process for making a nitro compound from hexamethylenetetramine. German patent DE 104280; 1899.

[94] Hultgren R. An X-ray study of symmetrical trinitrotoluene and cyclo trimethylenetrinitramine. J Chem Phys 1936;4(1):84. link1

[95] McCrone WC. Crystallographic data. 32. RDX (cyclotrimethylenetrinitramine). Anal Chem 1950;22(7):954–5. link1

[96] Miller PJ, Block S, Piermarini GJ. Effects of pressure on the thermal decomposition kinetics, chemical reactivity and phase behavior of RDX. Combust Flame 1991;83(1–2):174–84. link1

[97] Millar DIA, Oswald IDH, Francis DJ, Marshall WG, Pulham CR, Cumming AS. The crystal structure of b-RDX—an elusive form of an explosive revealed. Chem Commun 2009;7(5):562–4. link1

[98] Gao C, Yang L, Zeng Y, Wang X, Zhang C, Dai R, et al. Growth and characterization of b-RDX single-crystal particles. J Phys Chem C 2017;121 (33):17586–94. link1

[99] Baer BJ, Oxleyf J, Nicol M. The phase diagram of RDX (hexahydro-1,3,5- trinitro-s-triazine) under hydrostatic pressure. High Press Res 1990;2 (2):99–108. link1

[100] Gao C, Zhang X, Zhang C, Sui Z, Hou M, Dai R, et al. Effect of pressure gradient and new phases for 1,3,5-trinitrohexahydro-s-triazine (RDX) under high pressures. PCCP 2018;20(21):14374–83. link1

[101] Goto N, Fujihisa H, Yamawaki H, Wakabayashi K, Nakayama Y, Yoshida M, et al. Crystal structure of the high-pressure phase of hexahydro-1,3,5- trinitro-1,3,5-triazine (c-RDX). J Phys Chem B 2006;110(47):23655–9. link1

[102] Davidson AJ, Oswald ID, Francis DJ, Lennie AR, Marshall WG, Millar DI, et al. Explosives under pressure-the crystal structure of c-RDX as determined by high-pressure X-ray and neutron diffraction. Cryst Eng Comm 2008;10 (2):162–5. link1

[103] Dresselhaus-Cooper LE, Martynowych DJ, Zhang F, Tsay C, Ilavsky J, Wang SG, et al. Pressure-thresholded response in cylindrically shocked cyclotrimethylene trinitramine (RDX). J Phys Chem A 2020;124(17):3301–13.

[104] Ramos K, Addessio FL, Armenta CE, Banesh D, Barber JL, Biwer CM, et al. In situ investigation of phase transformation in cyclotrimethylene trinitramine (RDX) during shock loading using X-ray diffraction. Bull Am Phys Soc 2019;64(8). link1

[105] Turneaure SJ, Sinclair N, Gupta YM. Real-time examination of atomistic mechanisms during shock-induced structural transformation in silicon. Phys Rev Lett 2016;117(4):045502. link1

[106] Chen S, Li YX, Zhang NB, Huang JW, Hou HM, Ye SJ, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction. Phys Rev Lett 2019;123(25):255501. link1

[107] Choi CS, Prince E. The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 1972;28(9):2857–62. link1

[108] E JC, Wang L, Chen S, Zhang YY, Luo SN. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code. J Synchrotron Radiat 2018;25(Pt 2):604–11. link1

[109] Warren BE. X-ray diffraction. New York: Dover Publications; 1990. link1

[110] Ciezak JA, Jenkins TA, Liu Z, Hemley RJ. High-pressure vibrational spectroscopy of energetic materials: hexahydro-1,3,5-trinitro-1,3,5-triazine. J Phys Chem A 2007;111(1):59–63. link1

[111] Singh AK. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys 1993;73 (9):4278–86. link1

[112] Haycraft JJ, Stevens LL, Eckhardt CJ. The elastic constants and related properties of the energetic material cyclotrimethylene trinitramine (RDX) determined by Brillouin scattering. J Chem Phys 2006;124(2):024712. link1

[113] Huang B, Cao MH, Huang H, Hu CW. Construction and properties of structureand size-controlled micro/nano-energetic materials. Def Technol 2013;9 (2):59–79. link1

[114] Khasainov B, Ermolaev B, Presles HN, Vidal P. On the effect of grain size on shock sensitivity of heterogeneous high explosives. Shock Waves 1997;7 (2):89–105. link1

[115] Borne L, Patedoye JC, Spyckerelle C. Quantitative characterization of internal defects in RDX crystals. Propell Explos Pyrot 1999;24(4):255–9. link1

[116] Cady HH. Growth and defects of explosives crystals. MRS OPL 1993;296:243–54. link1

[117] Yan T, Wang JH, Liu YC, Zhao J, Yuan JM, Guo JH. Growth and morphology of 1,3,5,7-tetranitro-1,3,5,7-tetraazacy-clooct ane (HMX) crystal. J Cryst Growth 2015;430(1125):7–13. link1

[118] Chapman HN, Nugent KA. Coherent lensless X-ray imaging. Nat Photonics 2010;4(12):833–9. link1

[119] Yau A, Cha W, Kanan MW, Stephenson GB, Ulvestad A. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films. Science 2017;356(6339):739–42. link1

[120] Williams GJ, Pfeifer MA, Vartanyants IA, Robinson IK. Three-dimensional imaging of microstructure in Au nanocrystals. Phys Rev Lett 2003;90 (17):175501. link1

[121] Barty A, Marchesini S, Chapman HN, Cui C, Howells MR, Shapiro DA, et al. Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms. Phys Rev Lett 2008;101(5):055501. link1

[122] Kawaguchi T, Keller TF, Runge H, Gelisio L, Seitz C, Kim YY, et al. Gas–induced segregation in Pt-Rh alloy nanoparticles observed by in situ Bragg coherent diffraction imaging. Phys Rev Lett 2019;123(24):246001. link1

[123] Robinson IK, Vartanyants IA, Williams GJ, Pfeifer MA, Pitney JA. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys Rev Lett 2001;87(19):195505. link1

[124] Giewekemeyer K, Thibault P, Kalbfleisch S, Beerlink A, Kewish CM, Dierolf M, et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc Natl Acad Sci USA 2010;107(2):529–34. link1

[125] Barty A, Boutet S, Bogan MJ, Hau-Riege S, Marchesini S, Sokolowski-Tinten K, et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat Photonics 2008;2(7):415–9. link1

[126] Robinson I, Harder R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 2009;8(4):291–8. link1

[127] Favre-Nicolin V, Mastropietro F, Eymery J, Camacho D, Niquet Y, Borg B, et al. Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging. New J Phys 2010;12(3):035013. link1

[128] Cherukara MJ, Pokharel R, O’Leary TS, Baldwin JK, Maxey E, Cha W, et al. Three-dimensional X-ray diffraction imaging of dislocations in polycrystalline metals under tensile loading. Nat Commun 2018;9(1):1–6. link1

[129] Ziaja B, Chapman H, Fäustlin R, Hau-Riege S, Jurek Z, Martin A, et al. Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J Phys 2012;14(11):115015. link1

[130] Fan J, Sun Z, Wang Y, Park J, Kim S, Gallagher-Jones M, et al. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray freeelectron laser. Sci Rep 2016;6(1):34008. link1

[131] Rath AD, Timneanu N, Maia FR, Bielecki J, Fleckenstein H, Iwan B, et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and-delay beam line of the FLASH soft X-ray laser. Opt Express 2014;22(23):28914–25. link1

[132] Ravindran S, Tessema A, Kidane A. Multiscale damage evolution in polymer bonded sugar under dynamic loading. Mech Mater 2017;114:97–106. link1

[133] Spitzer D, Risse B, Schnell F, Pichot V, Klaumünzer M, Schaefer MR. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci Rep 2014;4(1):6575. link1

[134] Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P, Vahlas C. Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 2007;16(4):919–31. link1

[135] Sundaram D, Yang V, Yetter RA. Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog Energ Combust 2017;61:293–365. link1

[136] Chen S, Chai HW, He AM, Tschentscher T, Cai Y, Luo SN. Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small-angle X-ray scattering. J Synchrotron Radiat 2019;26(Pt 5):1412–21. link1

[137] Zhang TF, Ma Z, Li GP, Wang Z, Zhao BB, Luo YJ. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multiwalled carbon nanotube (MWCNT). J Solid State Chem 2016;237:394–403. link1

[138] Tang DY, Lyu J, He W, Chen J, Yang G, Liu PJ, et al. Metastable intermixed coreshell Al@M(IO3)x nanocomposites with improved combustion efficiency by using tannic acid as a functional interfacial layer. Chem Eng J 2020;384:123369. link1

[139] Zhou X, Wang YJ, Cheng ZP, Ke X, Jiang W. Facile preparation and energetic characteristics of core–shell Al/CuO metastable intermolecular composite thin film on a silicon substrate. Chem Eng J 2017;328:585–90. link1

[140] Liu HC, Zhang JD, Gou JY, Sun YY. Preparation of Fe2O3/Al composite powders by homogeneous precipitation method. Adv Powder Technol 2017;28 (12):3241–6. link1

[141] Bellitto VJ, Melnik MI, Sherlock MH, Chang JC, O’Connor JH, Mackey JA. Microstructure effects on the detonation velocity of a heterogeneous highexplosive. J Energ Mater 2018;36(4):485–92. link1

[142] Horie Y. Hot spots, high explosives ignition, and material microstructure. Mater Sci Forum 2014;767:3–12. link1

[143] Maienschein J. Research topics in explosives—a look at explosives behaviors. J Phys Conf Ser 2014;500:052027. link1

[144] Wang H, Xu J, Sun S, Liu Y, Zhu C, Li J, et al. Characterization of crystal microstructure based on small angle X-ray scattering (SAXS) technique. Molecules 2020;25(3):443. link1

[145] Viecelli J, Ree F. Carbon clustering kinetics in detonation wave propagation. J Appl Phys 1999;86(1):237–48. link1

[146] Bastea S. Aggregation kinetics of detonation nanocarbon. Appl Phys Lett 2012;100(21):214106. link1

[147] Bastea S. Nanocarbon condensation in detonation. Sci Rep 2017;7(1):42151. link1

[148] Mang J, Skidmore C, Howe P, Hjelm R, Rieker T. Structural characterization of energetic materials by small angle scattering. AIP Conf Proc 2000;505:699–702. link1

[149] Willey TM, Van Buuren T, Lee JR, Overturf GE, Kinney JH, Handly J, et al. Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering. Propell Explos Pyrot 2006;31(6):466–71. link1

[150] Capatina D, D’Amico K, Nudell J, Collins J, Schmidt O. DCS—a high flux beamline for time resolved dynamic compression science—design highlights. AIP Conf Proc 2016;1741:030036. link1

[151] Bagge-Hansen M, Lauderbach L, Hodgin R, Bastea S, Fried L, Jones A, et al. Measurement of carbon condensates using small-angle X-ray scattering during detonation of the high explosive hexanitrostilbene. J Appl Phys 2015;117(24):245902. link1

[152] Gustavsen RL, Dattelbaum DM, Watkins EB, Firestone MA, Podlesak DW, Jensen BJ, et al. Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the X-ray beam. J Appl Phys 2017;121(10):105902. link1

[153] Huber RC, Ringstrand BS, Dattelbaum DM, Gustavsen RL, Seifert S, Firestone MA, et al. Extreme condition nanocarbon formation under air and argon atmospheres during detonation of composition B-3. Carbon 2018;126:289–98. link1

[154] Chen S, Luo SN. Small-angle scattering of polychromatic X-rays: effects of bandwidth, spectral shape and high harmonics. J Synchrotron Radiat 2018;25 (Pt 2):496–504. link1

[155] Hammons JA, Nielsen MH, Bagge-Hansen M, Bastea S, Shaw WL, Lee JR, et al. Resolving detonation nanodiamond size evolution and morphology at submicrosecond timescales during high-explosive detonations. J Phys Chem C 2019;123(31):19153–64. link1

[156] Hammons JA, Nielsen MH, Bagge-Hansen M, Lauderbach LM, Hodgin RL, Bastea S, et al. Observation of variations in condensed carbon morphology dependent on composition B detonation conditions. Propell Explos Pyrot 2020;45(2):347–55. link1

[157] Dreizin EL. Metal-based reactive nanomaterials. Prog Energ Combust 2009;35 (2):141–67. link1

[158] He W, Liu PJ, He GQ, Gozin M, Yan QL. Highly reactive metastable intermixed composites (MICs): preparation and characterization. Adv Mater 2018;30 (41):e1706293. link1

[159] Jacob RJ, Jian G, Guerieri PM, Zachariah MR. Energy release pathways in nanothermites follow through the condensed state. Combust Flame 2015;162(1):258–64. link1

[160] Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, et al. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles. Propell Explos Pyrot 2008;33(2):122–30. link1

[161] Walker JD, Tannenbaum R. Characterization of the sol-gel formation of iron (III) oxide/hydroxide nanonetworks from weak base molecules. Chem Mater 2006;18(20):4793–801. link1

[162] Son SF. Performance and characterization of nanoenergetic materials at Los Alamos. Mater Res Soc 2003;800(AA5):2. link1

[163] Qin L, Gong T, Hao H, Wang K, Feng H. Core–shell structured nanothermites synthesized by atomic layer deposition. J Nanopart Res 2013;15(12):2150. link1

[164] Wang J, Qiao Z, Yang Y, Shen J, Long Z, Li Z, et al. Core–shell Al– polytetrauoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chemistry 2016;22 (1):279–84. link1

[165] Chen S, E J, Luo SN. SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems. J Appl Cryst 2017;50(3):951–8.

[166] Lu L, Bie BX, Li QH, Sun T, Fezzaa K, Gong XL, et al. Multiscale measurements on temperature-dependent deformation of a textured magnesium alloy with synchrotron X-ray imaging and diffraction. Acta Mater 2017;132:389–94. link1

[167] Zhao YL, Li GG, Hou HM, Shi JC, Luo SN. CN and C2 formation mechanisms in fs-laser induced breakdown of nitromethane in Ar or N2 atmosphere. J Hazard Mater 2020;393:122396. link1

[168] Campbell MB, Heilweil EJ. Noninvasive detection of weapons of mass destruction using terahertz radiation. Proc SPIE 2003;5070:38–43. link1

[169] Guo L, Hu Y, Zhang Y, Zhang C, Chen Y, Zhang XC. Vibrational spectrum of cHNIW investigated using terahertz time-domain spectroscopy. Opt Express 2006;14(8):3654–9. link1

[170] Melinger JS, Laman N, Grischkowsky D. The underlying terahertz vibrational spectrum of explosives solids. Appl Phys Lett 2008;93(1):011102. link1

[171] Melinger JS, Harsha SS, Laman N, Grischkowsky D. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials. Opt Express 2010;18(26):27238–50. link1

[172] Damarla G, Venkatesh M, Chaudhary AK. Temperature-dependent terahertz spectroscopy and refractive index measurements of aqua-soluble and plastic explosives. Appl Opt 2018;57(29):8743–50. link1

[173] Zhang W, Nickel D, Mittleman D. High-pressure cell for terahertz timedomain spectroscopy. Opt Express 2017;25(3):2983–93. link1

[174] Lewis W. Nevada test site-directed research and development, FY 2007 Report. Technical Report. Oak Ridge: US Department of Energy; 2006. Report No.: DOE/NV/25946-022; DOE/NV/11718-1245. Contract No.: DE-AC52- 06NA25946. link1

[175] Gebs R, Klatt G, Janke C, Dekorsy T, Bartels A. High-speed asynchronous optical sampling with sub-50 fs time resolution. Opt Express 2010;18 (6):5974–83. link1

[176] Brown KE, McGrane SD, Bolme CA, Moore DS. Ultrafast chemical reactions in shocked nitromethane probed with dynamic ellipsometry and transient absorption spectroscopy. J Phys Chem A 2014;118(14):2559–67. link1

[177] Bowlan P, Powell M, Perriot R, Martinez E, Kober EM, Cawkwell MJ, et al. Probing ultrafast shock-induced chemistry in liquids using broad-band midinfrared absorption spectroscopy. J Chem Phys 2019;150(20):204503. link1

[178] Holmes NC, Nellis WJ, Graham WB, Walrafen GE. Spontaneous Raman scattering from shocked water. Phys Rev Lett 1985;55(22):2433–6. link1

[179] Schmidt S, Moore D, Shaner J, Shampine D, Holt W. Coherent anti-stokes Raman scattering in benzene and nitromethane shock-compressed to 10 GPa. Physica 1986;139:587–9. link1

[180] Tas G, Franken J, Hambir SA, Hare DE, Dlott DD. Ultrafast Raman spectroscopy of shock fronts in molecular solids. Phys Rev Lett 1997;78(24):4585–8. link1

[181] Miller JE, Boehly TR, Melchior A, Meyerhofer DD, Celliers PM, Eggert JH, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. Rev Sci Instrum 2007;78(3):034903. link1

[182] Zhang C, Liu H, Duan X, Liu Y, Zhang H, Sun L, et al. Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers. Phys Plasmas 2019;26(1):012708. link1

[183] Bouyer V, Darbord I, Hervé P, Baudin G, Le Gallic C, Clément F, et al. Shock-todetonation transition of nitromethane: time-resolved emission spectroscopy measurements. Combust Flame 2006;144(1–2):139–50. link1

[184] Shaik AK, Epuru NR, Syed H, Byram C, Soma VR. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt Express 2018;26 (7):8069–83. link1

[185] Rao EN, Sunku S, Rao SV. Femtosecond laser-induced breakdown spectroscopy studies of nitropyrazoles: the effect of varying nitro groups. Appl Spectrosc 2015;69(11):1342–54. link1

[186] Gottfried JL, De Lucia FC Jr, Munson CA, Miziolek AW. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochim Acta B At Spectrosc 2007;62(12):1405–11. link1

[187] Dikmelik Y, McEnnis C, Spicer JB. Femtosecond and nanosecond laserinduced breakdown spectroscopy of trinitrotoluene. Opt Express 2008;16 (8):5332–7. link1

[188] Dong M, Lu J, Yao S, Zhong Z, Li J, Li J, et al. Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N. Opt Express 2011;19(18):17021–9. link1

[189] Ran PX, Hou HM, Luo SN. Molecule formation induced by non-uniform plume–air interactions in laser induced plasma. J Anal At Spectrom 2017;32 (11):2254–62. link1

[190] Civiš M, Civiš S, Sovová K, Dryahina K, Španeˇl P, Kyncl M. Laser ablation of FOX-7: proposed mechanism of decomposition. Anal Chem 2011;83 (3):1069–77. link1

[191] Hori T, Akamatsu F. Laser-induced breakdown plasma observed using a streak camera. Jpn J Appl Phys 2008;47(6R):4759–61. link1

[192] Rabasovic MS, Rabasovic MD, Marinkovic BP, Sevic D. Laser-induced plasma measurements using Nd: YAG laser and streak camera: Timing considerations. Atoms 2019;7(1):6. link1

[193] Celliers PM, Bradley DK, Collins GW, Hicks DG, Boehly TR, Armstrong WJ. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev Sci Instrum 2004;75(11):4916–29. link1

[194] Celliers PM, Erskine DJ, Sorce CM, Braun DG, Landen OL, Collins GW. A highresolution two-dimensional imaging velocimeter. Rev Sci Instrum 2010;81 (3):035101. link1

[195] Greenfield SR, Casson JL, Koskelo AC. Nanosecond interferometric studies of surface deformations of dielectrics induced by laser irradiation. In: Proceedings of the Laser-Induced Damage in Optical Materials: 1999; 1999 Oct 4–7; Boulder, CO, USA; 2000.

[196] Gahagan KT, Moore DS, Funk DJ, Reho JH, Rabie RL. Ultrafast interferometric microscopy for laser-driven shock wave characterization. J Appl Phys 2002;92(7):3679–82. link1

[197] Temnov VV, Sokolowski-Tinten K, Von der Zhou P, Linde D. Femtosecond time-resolved interferometric microscopy. Appl Phys A Mater Sci Process 2004;78(4):483–9. link1

[198] Greenfield SR, Luo SN, Paisley DL, Loomis EN, Swift DC, Koskelo AC. Transient imaging displacement interferometry applied to shock loading. AIP Conf Proc 2007;955(1):1093–6. link1

[199] Wu Y, Wang F, Wang Q, Li Y, Jiang S. A high temporal resolution numerical algorithm for shock wave velocity diagnosis. Sci Rep 2019;9(1):8597. link1

Related Research