Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 3 doi: 10.1016/j.eng.2020.06.027

Progress in Research and Development of Molten Chloride Salt Technology for Next Generation Concentrated Solar Power Plants

a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart 70569, Germany
b Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Cologne 51147, Germany

Received: 2019-12-18 Revised: 2019-06-04 Accepted: 2020-06-28 Available online: 2021-02-27

Next Previous

Abstract

Concentrated solar power (CSP) plants with thermal energy storage (TES) system are emerging as one kind of the most promising power plants in the future renewable energy system, since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy. In order to significantly reduce the levelized cost of electricity (LCOE) of the present commercial CSP plants, the next generation CSP technology with higher process temperature and energy efficiency is being developed. The TES system in the next generation CSP plants works with new TES materials at higher temperatures (> 565 °C) compared to that with the commercial nitrate salt mixtures. This paper reviews recent progress in research and development of the next generation CSP and TES technology. Emphasis is given on the advanced TES technology based on molten chloride salt mixtures such as MgCl2/NaCl/KCl which has similar thermo-physical properties as the commercial nitrate salt mixtures, higher thermal stability (> 800 °C), and lower costs (< 0.35 USD∙kg−1). Recent progress in the selection/optimization of chloride salts, determination of molten chloride salt properties, and corrosion control of construction materials (e.g., alloys) in molten chlorides is reviewed.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

References

[ 1 ] REN21. Renewables 2019: global status report. Report. Nairobi: United Nations Environment Programme; 2019.

[ 2 ] International Energy Agency. Technology roadmap—solar thermal electricity. Technology report. Paris: International Energy Agency; 2014.

[ 3 ] Liu M, Tay NHS, Bell S, Belusko M, Jacob R, Will G, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energ Rev 2016;53:1411–32. link1

[ 4 ] Mehos M, Turchi C, Vidal J, Wagner M, Ma Z, Ho C, et al. Concentrating solar power Gen3 demonstration roadmap. Technical report. Golden: National Renewable Energy Lab; 2017 Jan. Report No: NREL/TP-5500-67464. Contract No.: AC36-08GO28308.

[ 5 ] Solar Millennium AG. The parabolic trough power plants Andasol 1 to 3. Erlangen: Solar Millennium AG; 2008. link1

[ 6 ] Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energ Combust 2013;39(4):285–319. link1

[ 7 ] Bonk A, Sau S, Uranga N, Hernaiz M, Bauer T. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog Energ Combust 2018;67:1339–51. link1

[ 8 ] Hinkley JT, Hayward JA, Beath AC, Brinsmead TS, Meybodi MA, Lovegrove K. Current and future status of concentrating solar power in Australia. J Jpn Inst Energ 2016;95(3):227–34. link1

[ 9 ] Ding W, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review. Front Chem Sci Eng 2018;12(3):564–76. link1

[10] Prieto C, Fereres S, Ruiz-Cabañas FJ, Rodriguez-Sanchez A, Montero C. Carbonate molten salt solar thermal pilot facility: plant design, commissioning and operation up to 700 C. Renew Energ 2020;151:528–41. link1

[11] Sarvghad M, Steinberg TA, Will G. Corrosion of steel alloys in eutectic NaCl + Na2CO3 at 700 C and Li2CO3 + K2CO3 + Na2CO3 at 450 C for thermal energy storage. Sol Energ Mat Sol C 2017;170:48–59. link1

[12] Fernández AG, Gomez-Vidal J, Oró E, Kruizenga A, Solé A, Cabeza LF. Mainstreaming commercial CSP systems: a technology review. Renew Energ 2019;140:152–76. link1

[13] Yin J, Zheng Q, Peng Z, Zhang X. Review of supercritical CO2 power cycles integrated with CSP. Int J Energ Res 2019;44(3):1337–69. link1

[14] Ding W, Shi H, Xiu Y, Bonk A, Weisenburger A, Jianu A, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol Energ Mat Sol C 2018;184:22–30. link1

[15] The SunShot Initiative [Internet]. Washington, DC: US Department of Energy; 2019 [cited 2019 Dec 16]. Available from: https://www.energy.gov/ eere/solar/sunshot-initiative. link1

[16] astri.org.au [Internet]. Australian Solar Thermal Research Institute; [cited 2019 Dec 16]. Available from: https://www.astri.org.au/. link1

[17] sfera.sollab.eu [Internet]. Solar Facilities for the European Research Area; [cited 2019 Dec 16]. Available from: https://sfera.sollab.eu/. link1

[18] Final report summary—SFERA (Solar Facilities for the European Research Area) [Internet]. Solar Facilities for the European Research Area; [cited 2019 Dec 16]. Available from: https://cordis.europa.eu/project/id/228296/reporting. link1

[19] sfera3.sollab.eu [Internet]. Brussels: SFERA-3; [cited 2019 Dec 16]. Available from: https://sfera3.sollab.eu/. link1

[20] stage-ste.psa.es [Internet]. Scientific and Technological Alliance for Guaranteeing the European Excellence in Concentrating Solar Thermal Energy; [cited 2019 Dec 16]. Available from: http://stage-ste.psa.es/. link1

[21] Liu B, Wei X, Wang W, Lu J, Ding J. Corrosion behavior of Ni-based alloys in molten NaCl–CaCl2–MgCl2 eutectic salt for concentrating solar power. Sol Energ Mat Sol C 2017;170:77–86. link1

[22] Wu Y, Ren N, Wang T, Ma C. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Sol Energ 2011;85(9):1957–66. link1

[23] Sun H, Zhang P, Wang J. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl–KCl–MgCl2 salt at different temperatures. Corros Sci 2018;143:187–99. link1

[24] Wang Z. CSP technology and industry development in China [presentation]. In: SETO CSP Program Summit 2019; 2019 Mar 18–19; Oakland, CA, USA; 2019.

[25] Murphy C, Sun Y, Cole W, Maclaurin G, Turchi C, Mehos M. The potential role of concentrating solar power within the context of DOE’s 2030 solar cost targets. Technical report. Golden: National Renewable Energy Laboratory; 2019 Jan. Report No.: NREL/TP-6A20-71912.

[26] Generation 3 Concentrating Solar Power Systems (Gen3 CSP) [Internet]. Washington, DC: US Department of Energy; [cited 2019 Dec 16]. Available from: https://www.energy.gov/eere/solar/generation-3-concentrating-solarpower-systems-gen3-csp. link1

[27] Ho CK. A review of high-temperature particle receivers for concentrating solar power. Appl Therm Eng 2016;109:958–69. link1

[28] Ma Z, Glatzmaier GC, Mehos M. Development of solid particle thermal energy storage for concentrating solar power plants that use fluidized bed technology. Energ Procedia 2014;49:898–907. link1

[29] Mendez Cruz CM, Lance B, Rochau GE. sCO2 Power Cycles Summit summary, November 2017. Technical report. Albuquerque: Sandia National Laboratories; 2017 Nov.

[30] Ho CK, Carlson M, Garg P, Kumar P. Technoeconomic analysis of alternative solarized s-CO2 Brayton cycle configurations. J Sol Energ Eng 2016;138 (5):051008. link1

[31] Kruizenga AM. Corrosion mechanisms in chloride and carbonate salts. Report. Sandia: Sandia National Laboratories; 2012 Sep.

[32] Vidal JC, Klammer N. Molten chloride technology pathway to meet the U.S. DOE SunShot initiative with Gen3 CSP. AIP Conf Proc 2019;2126(1):080006.

[33] Gen 3 Particle Pilot Plant (G3P3) [Internet]. Sandia: National Technology and Engineering Solutions of Sandia, LLC.; [cited 2019 Dec 16]. Available from: https://energy.sandia.gov/programs/renewable-energy/csp/current-researchprojects/gen-3-particle-pilot-plant-g3p3/. link1

[34] Ho CK. Gen 3 Particle Pilot Plant (G3P3): integrated high-temperature particle system for CSP [poster]. In: DOE Gen 3 CSP Kickoff Meeting; 2018 Jun 25; Orlando, FL, USA; 2018.

[35] Sullivan S. Gen3 gas phase system development and demonstration [presentation]. In: SETO CSP Program Summit 2019; 2019 Mar 18–19; Oakland, CA, USA; 2019.

[36] Robb K. Molten salt thermophysical properties and test facility [presentation]. In: DOE Gen 3 CSP Kickoff Meeting; 2018 Jun 25; Orlando, FL, USA; 2018.

[37] Ho CK, Christian JM, Yellowhair JE, Armijo K, Kolb WJ, Jeter S, et al. On-sun performance evaluation of alternative high-temperature falling particle receiver designs. J Sol Energ Eng 2019;141(1):011009. link1

[38] Albrecht KJ, Ho CK. Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger. Sol Energ 2019;178:331–40. link1

[39] Sohal MS, Ebner MA, Sabharwall P, Sharpe P. Engineering database of liquid salt thermophysical and thermochemical properties. Idaho Falls: Idaho National Laboratory; 2010 Mar. Report No.: INL/EXT-10-18297.

[40] Kurley JM, Halstenberg PW, McAlister A, Raiman S, Dai S, Mayes RT. Enabling chloride salts for thermal energy storage: implications of salt purity. RSC Adv 2019;9(44):25602–8. link1

[41] Arjomandi M, Bayon-Sandoval A, Beath A, Bruno F, Coventry J, Gurgenci H, et al. ASTRI Milestone 12 report—for public dissemination. Canberra: Commonwealth Scientific and Industrial Research Organisation; 2017. link1

[42] Coventry J, Andraka C, Pye J, Blanco M, Fisher J. A review of sodium receiver technologies for central receiver solar power plants. Sol Energ 2015;122:749–62. link1

[43] Singh R, Miller SA, Rowlands AS. Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant. Energy 2013;55:1025–32. link1

[44] Singh R, Miller SA, Rowlands AS, Jacobs PA. Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant. Energy 2013;50:194–204. link1

[45] Qin K, Jahn I, Jacobs P. Effect of operating conditions on the elastohydrodynamic performance of foil thrust bearings for supercritical CO2 cycles. J Eng Gas Turbine Power 2016;139(4):042505-1–10.

[46] Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energ Rev 2012;16(4):2118–32. link1

[47] Jacob R, Bruno F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sustain Energ Rev 2015;48:79–87. link1

[48] Liu M, Gomez JC, Turchi CS, Tay NHS, Saman W, Bruno F. Determination of thermo-physical properties and stability testing of high-temperature phasechange materials for CSP applications. Sol Energ Mat Sol C 2015;139:81–7. link1

[49] Jiang Y, Sun Y, Liu M, Bruno F, Li S. Eutectic Na2CO3–NaCl salt: a new phase change material for high temperature thermal storage. Sol Energ Mat Sol C 2016;152:155–60. link1

[50] Bayon A, Bader R, Jafarian M, Fedunik-Hofman L, Sun Y, Hinkley J, et al. Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications. Energy 2018;149:473–84. link1

[51] Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Sol Energ 2017;157:251–8. link1

[52] Mohan G, Venkataraman M, Gomez-Vidal J, Coventry J. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Convers Manage 2018;167:156–64. link1

[53] Sarvghad M, Bell S, Raud R, Steinberg TA, Will G. Stress assisted oxidative failure of Inconel 601 for thermal energy storage. Sol Energ Mat Sol C 2017;159:510–7. link1

[54] Sarvghad M, Muránsky O, Steinberg TA, Hester J, Hill MR, Will G. On the effect of cold-rolling on the corrosion of SS 316L alloy in a molten carbonate salt. Sol Energ Mat Sol C 2019;202:110136. link1

[55] Sarvghad M, Will G, Steinberg TA. Corrosion of steel alloys in molten NaCl + Na2SO4 at 700 C for thermal energy storage. Sol Energ Mat Sol C 2018;179:207–16. link1

[56] Sarvghad Moghaddam M. Corrosion of structural alloys in molten salts for solar thermal energy storage [dissertation]. Brisbane: Queensland University of Technology; 2018.

[57] vastsolar.com [Internet]. Darlinghurst: Vast Solar; [cited 2019 Dec 16]. Available from: https://vastsolar.com. link1

[58] Wood C, Drewes K. Vast Solar: improving performance and reducing cost and risk using high temperature modular arrays and sodium heat transfer fluid. In: Proceedings of the 25th SolarPACES Conference; 2019 Oct 1–4; Daegu, Republic of Korea; 2019.

[59] Teller O, Nicolai JP, Lafoz M, Laing D, Tamme R, Pedersen AS, et al. Joint EASE/ EERA recommendations for a European energy storage technology development roadmap towards 2030. Brussels: European Association for Storage of Energy, European Energy Research Alliance; 2013. link1

[60] Directorate-General for Research and Innovation (European Commission), Joint Research Centre (European Commission). The Strategic Energy Technology (SET) Plan. Luxembourg: Publications Office of the European Union; 2017.

[61] Ding W, Bonk A, Gussone J, Bauer T. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. J Energ Storage 2018;15:408–14. link1

[62] Ding W, Shi H, Jianu A, Xiu Y, Bonk A, Weisenburger A, et al. Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials. Sol Energ Mat Sol C 2019;193:298–313. link1

[63] Walczak M, Pineda F, Fernández AG, Mata-Torres C, Escobar RA. Materials corrosion for thermal energy storage systems in concentrated solar power plants. Renew Sustain Energ Rev 2018;86:22–44. link1

[64] Fernández AG, Pineda F, Walczak M, Cabeza LF. Corrosion evaluation of alumina-forming alloys in carbonate molten salt for CSP plants. Renew Energ 2019;140:227–33. link1

[65] Fernandez AG, Cabeza LF. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants. Sol Energ Mat Sol C 2019;192:179–87. link1

[66] Ebert M, Amsbeck L, Rheinländer J, Schlögl-Knothe B, Schmitz S, Sibum M, et al. Operational experience of a centrifugal particle receiver prototype. AIP Conf Proc 2019;2126(1):030018. link1

[67] Wei W, Trebing D, Amsbeck L, Buck R, Pitz-Paal R. Prototype testing of a centrifugal particle receiver for high-temperature concentrating solar applications. J Sol Energ Eng 2015;137(4):041011. link1

[68] Ebert M, Amsbeck L, Jensch A, Hertel J, Rheinländer J, Trebing D, et al. Upscaling, manufacturing and test of a centrifugal particle receiver. In: Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology; 2016 Jun 26–30; Charlotte, NC, USA; 2016. p. ES2016-59252.

[69] Pacio J, Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol Energ 2013;93:11–22. Erratum in: Solar Energ 2017;144:827.

[70] Flesch J, Fritsch A, Cammi G, Marocco L, Fellmoser F, Pacio J, et al. Construction of a test facility for demonstration of a liquid lead-bismuthcooled 10 kW thermal receiver in a solar furnace arrangement—SOMMER. Energ Procedia 2015;69:1259–68. link1

[71] Niedermeier K, Marocco L, Flesch J, Mohan G, Coventry J, Wetzel T. Performance of molten sodium vs. molten salts in a packed bed thermal energy storage. Appl Therm Eng 2018;141:368–77. link1

[72] China announces the first group of CSP demonstration projects [Internet]. SolarPACES; 2016 Sep 1 [cited 2019 Dec 16]. Available from: http:// www.solarpaces.org/china-announces-the-first-group-of-csp-demonstrationprojects/. link1

[73] Wang T, Bai F, Chu S, Zhang X, Wang Z. Experiment study of a quartz tube falling particle receiver. Front Energ 2017;11(4):472–9. link1

[74] Yang B, Bai F, Wang Y, Wang Z. Study on standby process of an air-based solid packed bed for flexible high temperature heat storage: experimental results and modelling. Appl Energ 2019;238:135–46. link1

[75] Wang J, Huang Y, Zang J, Liu G. Recent research progress on supercritical carbon dioxide power cycle in China. In: Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition; 2015 Jun 15–19; Montreal, QC, Canada; 2015. p. GT2015-43938.

[76] Li H, Zhang Y, Yao M, Yang Y, HanW, BaiW. Design assessment of a 5 MW fossilfired supercritical CO2 power cycle pilot loop. Energy 2019;174:792–804. link1

[77] Moullec YL, Zhang J, Yang Z, Chen W, Qi Z, Zhou P, et al. Shouhang-EDF 10 MWe supercritical CO2 cycle + CSP demonstration project. In: Proceedings of the 3rd European supercritical CO2 Conference; 2019 Sep 19–20; Paris, France; 2019. p. 138–47.

[78] Luo Z, Sultan U, Ni M, Peng H, Shi B, Xiao G. Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms. Renew Energ 2016;94:114–25. link1

[79] Bannur S. Concentrated solar power in India: current status, challenges and future outlook. Curr Sci 2018;115(2):222–7. link1

[80] Kraemer S. Japan and Australia test solar hydrogen component [Internet]. SolarPACES; 2019 Oct 1 [cited 2019 Dec 16]. Available from: http:// www.solarpaces.org/japan-and-australia-test-solar-hydrogen-component/. link1

[81] Kodama T, Gokon N, Cho HC, Bellan S. Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: first performance test on twostep water splitting with ceria using a Miyazaki solar concentrating system. AIP Conf Proc 2019;2126(1):180011. link1

[82] Patel NS, Pavlík V, Bocˇa M. High-temperature corrosion behavior of superalloys in molten salts—a review. Crit Rev Solid State 2017;42(1):83–97. link1

[83] Ding W, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: selection of promising chloride salts and study on corrosion of alloys in molten chloride salts. AIP Conf Proc 2019;2126:200014. link1

[84] Wei X, Song M, Peng Q, Ding J, Yang J. A new ternary chloride eutectic mixture and its thermo-physical properties for solar thermal energy storage. Energ Procedia 2014;61:1314–7. link1

[85] Maksoud L, Bauer T. Experimental investigation of chloride molten salts for thermal energy storage applications. In: Proceedings of the 10th International Conference on Molten Salt Chemistry and Technology; 2015 Jun 10–12; Shenyang, China; 2015.

[86] Sun H, Wang J, Tang Z, Liu Y, Wang C. Assessment of effects of Mg treatment on corrosivity of molten NaCl–KCl–MgCl2 salt with Raman and infrared spectra. Corros Sci 2020;164:108350. link1

[87] Sau S, Tizzoni A, Corsaro N, Veca E, Navas M, Martinez-Tarifa A. Report on protocols for standardized testing procedures and data analysis criteria. Roma: Italian National Agency for New Technologies, Energy and Sustainable Economic Development; 2017. link1

[88] Wang K, Molina E, Dehghani G, Xu B, Li P, Hao Q, et al. Experimental investigation to the properties of eutectic salts by NaCl–KCl–ZnCl2 for application as high temperature heat transfer fluids. In: Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology; 2014 Jun 30–Jul 2; Boston, MA, USA; 2014. p. ES2014-6578.

[89] Li Y, Xu X, Wang X, Li P, Hao Q, Xiao B. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Sol Energ 2017;152:57–79. link1

[90] Wakao M, Minami K, Nagashima A. Viscosity measurements of molten LiCl in the temperature range 886–1275 K. Int J Thermophys 1991;12 (2):223–30. link1

[91] Gomez-Vidal JC, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl–LiCl) for solar thermal technologies. Sol Energ Mat Sol C 2016;157:234–44. link1

[92] Wang JW, Zhang CZ, Li ZH, Zhou HX, He JX, Yu JC. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl–MgCl2 in atmosphere. Sol Energ Mat Sol C 2017;164:146–55. link1

[93] Guo S, Zhang J, Wu W, Zhou W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog Mater Sci 2018;97:448–87. link1

[94] Nagaoka T, Kita K, Kondo N. Hot corrosion of Al2O3 and SiC ceramics by KCl– NaCl molten salt. J Ceram Soc Jpn 2015;123(1440):685–9. link1

[95] Ding W, Shi Y, Kessel F, Koch D, Bauer T. Characterization of corrosion resistance of C/C–SiC composite in molten chloride mixture MgCl2/NaCl/KCl at 700 C. NPJ Mater Degrad 2019;3:42. link1

[96] Kipouros GJ, Sadoway DR. A thermochemical analysis of the production of anhydrous MgCl2. J Light Met 2001;1(2):111–7. link1

[97] Maricle DL, Hume DN. A new method for preparing hydroxide-free alkali chloride melts. J Electrochem Soc 1960;107(4):354–6. link1

[98] Indacochea JE, Smith JL, Litko KR, Karell EJ. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. J Mater Res 1999;14(5):1990–5. link1

[99] Garcia-Diaz BL, Olson L, Martinez-Rodriguez M, Fuentes R, Colon-Mercado H, Gray J. High temperature electrochemical engineering and clean energy systems. J S C Acad Sci 2016;14(1):4. link1

[100] Choi S, Orabona NE, Dale OR, Okabe P, Inman C, Simpson MF. Effect of Mg dissolution on cyclic voltammetry and open circuit potentiometry of molten MgCl2–KCl–NaCl candidate heat transfer fluid for concentrating solar power. Sol Energy Mat Sol C 2019;202:110087. link1

[101] Skar RA. Chemical and electrochemical characterisation of oxide/hydroxide impurities in the electrolyte for magnesium production [dissertation]. Trondheim: Norwegian University of Science and Technology; 2001. link1

[102] Gussone J. Schmelzflusselektroytische Abscheidung von Titan auf Vertärkungsfasern zur Herstellung von Titanmatrixverbundwerkstoffen [dissertation]. Aachen: RWTH Aachen University; 2012. German.

[103] Ding W, Bonk A, Gussone J, Bauer T. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage. Energ Procedia 2017;135:82–91. link1

[104] Ding W, Gomez-Vidal J, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: electrolytical salt purification for reducing corrosive impurity level. Sol Energ Mat Sol C 2019;199:8–15. link1

[105] Gomez-Vidal JC, Fernandez AG, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests. Sol Energ Mat Sol C 2017;166:222–33. link1

[106] Gomez-Vidal JC, Fernandez AG, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions. Sol Energ Mat Sol C 2017;166:234–45. link1

[107] Gomez-Vidal JC. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. NPJ Mater Degrad 2017;1:7. link1

[108] Azarbayjani K, Rizvi G, Foroutan F. Evaluating effects of immersion tests in molten copper chloride salts on corrosion resistant coatings. Int J Hydrogen Energ 2016;41(19):8394–400. link1

[109] Raiman SS, Mayes RT, Kurley JM, Parrish R, Vogli E. Amorphous and partiallyamorphous metal coatings for corrosion resistance in molten chloride salt. Sol Energ Mat Sol C 2019;201:110028. link1

Related Research