Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 8 doi: 10.1016/j.eng.2020.07.003

Analysis of the Quality of Daily DEM Generation with Geosynchronous InSAR

a School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
c China Aerospace Science and Technology Corporation, Beijing 100048, China

Received: 2018-10-20 Revised: 2019-09-28 Accepted: 2020-06-29 Available online: 2020-07-15

Next Previous

Abstract

Up-to-date digital elevation model (DEM) products are essential in many fields such as hazards mitigation and urban management. Airborne and low-earth-orbit (LEO) space-borne interferometric synthetic aperture radar (InSAR) has been proven to be a valuable tool for DEM generation. However, given the limitations of cost and satellite repeat cycles, it is difficult to generate or update DEMs very frequently (e.g., on a daily basis) for a very large area (e.g., continental scale or greater). Geosynchronous synthetic aperture radar (GEOSAR) satellites fly in geostationary earth orbits, allowing them to observe the same ground area with a very short revisit time (daily or shorter). This offers great potential for the daily DEM generation that is desirable yet thus far impossible with space-borne sensors. In this work, we systematically analyze the quality of daily GEOSAR DEM. The results indicate that the accuracy of a daily GEOSAR DEM is generally much lower than what can be achieved with typical LEO synthetic aperture radar (SAR) sensors; therefore, it is important to develop techniques to mitigate the effects of errors in GEOSAR DEM generation.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Hanssen RF. Radar interferometry: data interpretation and error analysis. New York: Kluwer Academic Publishers; 2001. link1

[ 2 ] Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, et al. The shuttle radar topography mission. Rev Geophys 2007;45(2):RG2004. link1

[ 3 ] Ferretti A, Prati C, Rocca F. Multibaseline InSAR DEM reconstruction: the wavelet approach. IEEE Trans Geosci Remote Sens 1999;37(2):705–15. link1

[ 4 ] Rabus B, Eineder M, Roth A, Bamler R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 2003;57(4):241–62. link1

[ 5 ] Gruber A, Wessel B, Huber M, Roth A. Operational TanDEM-X DEM calibration and first validation results. ISPRS J Photogramm Remote Sens 2012;73:39–49. link1

[ 6 ] Rizzoli P, Martone M, Gonzalez C, Wecklich C, Borla Tridon D, Bräutigam B, et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J Photogramm Remote Sens 2017;132:119–39. link1

[ 7 ] Tomiyasu K, Pacelli JL. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sens 1983;GE-21(3): 324–9. link1

[ 8 ] Tomiyasu K. Synthetic aperture radar in geosynchronous orbit. In: Proceedings of the 1978 Antennas and Propagation Society International Symposium; 1978 Mar 15–19; Washington, DC, USA; 1978. link1

[ 9 ] Guarnieri AM, Tebaldini S, Rocca F, Broquetas A. GEMINI: geosynchronous SAR for earth monitoring by interferometry and imaging. In: Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; 2012 Jul 22–27; Munich, Germany; 2012. link1

[10] Chao B, Harding D, Cohen S, Luthcke S, Hofton M, Blair JB. Global Earthquake Satellite System requirements derived from a suite of scientific observational and modeling studies. Final Reports. Washington, DC: National Aeronautics and Space Administration; 2002. link1

[11] Hu C, Li Y, Dong X, Wang R, Cui C. Optimal 3D deformation measuring in inclined geosynchronous orbit SAR differential interferometry. Sci China Inf Sci 2017;60(6):060303. link1

[12] Zheng W, Hu J, Zhang W, Yang C, Li Z, Zhu J. Potential of geosynchronous SAR interferometric measurements in estimating three-dimensional surface displacements. Sci China Inf Sci 2017;60(6):060304. link1

[13] Hu C, Li Y, Dong X, Wang R, Cui C, Zhang B. Three-dimensional deformation retrieval in geosynchronous SAR by multiple-aperture interferometry processing: theory and performance analysis. IEEE Trans Geosci Remote Sens 2017;55(11):6150–69. link1

[14] Kou L, Wang X, Xiang M, Zhu M. Interferometric estimation of threedimensional surface deformation using geosynchronous circular SAR. IEEE Trans Aerosp Electron Syst 2012;48(2):1619–35. link1

[15] Ruiz-Rodon J, Broquetas A, Makhoul E, Monti Guarnieri A, Rocca F. Nearly zero inclination geosynchronous SAR mission analysis with long integration time for earth observation. IEEE Trans Geosci Remote Sens 2014;52(10):6379–91. link1

[16] Li D, Rodriguez-Cassola M, Prats-Iraola P, Dong Z, Wu M, Moreira A. Modelling of tropospheric delays in geosynchronous synthetic aperture radar. Sci China Inf Sci 2017;60(6):060307. link1

[17] Ji Y, Zhang Q, Zhang Y, Dong Z. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities. Sci China Inf Sci 2017;60(6):060308. link1

[18] Zebker HA, Villasenor J. Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 1992;30(5):950–9. link1

[19] Bamler R, Hartl P. Synthetic aperture radar interferometry. Inverse Probl 1998;14(4):R1–R54. link1

[20] Zebker HA, Goldstein RM. Topographic mapping from interferometric synthetic aperture radar observations. J Geophys Res Solid Earth 1986;91(B5):4993–9. link1

[21] Rufino G, Moccia A, Esposito S. DEM generation by means of ERS tandem data. IEEE Trans Geosci Remote Sens 1998;36(6):1905–12. link1

[22] Ferraiuolo G, Pascazio V, Schirinzi G. Maximum a posteriori estimation of height profiles in InSAR imaging. IEEE Geosci Remote Sens Lett 2004;1(2):66–70. link1

[23] Chen CW, Zebker HA. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A 2001;18(2):338–51. link1

[24] Zhou C, Ge L, Dong C, Chang H. A case study of using external DEM in InSAR DEM generation. Geo Spat Inf Sci 2005;8(1):14–8. link1

[25] Long T, Hu C, Ding Z, Dong X, Tian W, Zeng T. Geosynchronous SAR: system and signal processing. Singapore: Springer Nature Singapore Pte Ltd.; 2018. link1

[26] Ishimaru A, Kuga Y, Liu J, Kim Y, Freeman T. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Sci 1999;34(1):257–68. link1

[27] Sun J, Bi Y, Wang Y, Hong W. High resolution SAR performance limitation by the change of tropospheric refractivity. In: Proceedings of 2011 IEEE CIE International Conference on Radar; 2011 Oct 24–27; Chengdu; 2011. link1

[28] Hu C, Li Y, Dong X, Wang R, Ao D. Performance analysis of L-band geosynchronous SAR imaging in the presence of ionospheric scintillation. IEEE Trans Geosci Remote Sens 2017;55(1):159–72. link1

[29] Meyer FJ. Performance requirements for ionospheric correction of lowfrequency SAR data. IEEE Trans Geosci Remote Sens 2011;49(10):3694–702. link1

[30] Tian Y, Hu C, Dong X, Zeng T, Long T, Lin K, et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging. IEEE Geosci Remote Sens Lett 2015;12(4):721–5. link1

Related Research