Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2020, Volume 6, Issue 10 doi: 10.1016/j.eng.2020.07.013

SARS-CoV-2 Entry Factors: ACE2 and TMPRSS2 Are Expressed in Peri-Implantation Embryos and the Maternal–Fetal Interface

a Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
b Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
c Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
d Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
e Peking–Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
f National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
g Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
h Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Beijing 100191, China

Received: 2020-04-14 Revised: 2020-05-15 Accepted: 2020-07-12 Available online: 2020-08-17

Next Previous

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world, leading to large-scale population infection. Angiotensin-converting enzyme 2 (ACE2) is the receptor of both severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, it is still controversial whether vertical transmission exists. In order to investigate the potential risk of SARS-CoV-2 vertical transmission, we explored ACE2 and TMPRSS2 expression patterns in peri-implantation embryos and the maternal–fetal interface using previously published single-cell transcriptome data. The results show that day 6 (D6) trophectoderm cells (TE) in peri-implantation embryos, as well as 8-week syncytiotrophoblast (STB_8W) cells and 24-week extravillous trophoblast (EVTs_24W) cells in the maternal–fetal interface, strongly co-expressed ACE2 and TMPRSS2, indicating SARS-CoV-2 infection susceptibility. The ACE2-positive-expressing cells in the three cell types mentioned above share common characteristics, which are involved in autophagy and immune-related processes. ACE2 showed no gender bias in post-implantation embryos but showed a significant gender difference in D6 TE, D6 primitive endoderms (PE), and ACE2 positive-expressing STB cells. These findings indicate that there may be different SARS-CoV-2 infection susceptibilities of D6 embryos of different genders and during the gestation of different genders. Our results reveal potential SARS-CoV-2 infection risks during embryo transfer, peri-implantation embryo development, and gestation.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Zisman LS, Keller RS, Weaver B, Lin Q, Speth R, Bristow MR, et al. Increased angiotensin-(1–7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation 2003;108(14):1707–12. link1

[ 2 ] Tikellis C, Johnston CI, Forbes JM, Burns WC, Burrell LM, Risvanis J, et al. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension 2003;41(3):392–7. link1

[ 3 ] Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci 2004;25(6):291–4. link1

[ 4 ] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579(7798):270–3. link1

[ 5 ] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2). 271–80.e8. link1

[ 6 ] Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14(2):1–8. link1

[ 7 ] Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203(2):631–7. link1

[ 8 ] Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Bioph Res Co 2020;526(1):135–40. link1

[ 9 ] Aghaeepour N, Ganio EA, Mcilwain D, Tsai AS, Tingle M, Van Gassen S, et al. An immune clock of human pregnancy. Sci Immunol 2017;2(15):eaan2946. link1

[10] Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. N Engl J Med 2014;370(23):2211–8. link1

[11] Delorme-Axford E, Sadovsky Y, Coyne CB. The placenta as a barrier to viral infections. Annu Rev Virol 2014;1(1):133–46. link1

[12] Pringle KG, Tadros MA, Callister RJ, Lumbers ER. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta 2011;32(12):956–62. link1

[13] Li M, Chen L, Zhang J, Xiong C, Li X. The SARS-CoV-2 receptor ACE2 expression of maternal–fetal interface and fetal organs by single-cell transcriptome study. PLoS ONE 2020;15(4):e0230295. link1

[14] Ng PC, Leung CW, Chiu WK, Wong SF, Hon EK. SARS in newborns and children. Biol Neonate 2004;85(4):293–8. link1

[15] Jeong SY, Sung SI, Sung JH, Ahn SY, Kang ES, Chang YS, et al. MERS-CoV infection in a pregnant woman in Korea. J Korean Med Sci 2017;32(10):1717–20. link1

[16] Zhang Q, Ding Y, Hou J, He L, Huang Z, Wang H, et al. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. J First Mil Med Univ 2003;23(11):1125–7. Chinese. link1

[17] Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004;203(2):622–30. link1

[18] Zeng H, Xu C, Fan J, Tang Y, Deng Q, Zhang W, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA 2020;323(18):1848–9. link1

[19] Dong L, Tian J, He S, Zhu C, Wang J, Liu C, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 2020;323(18):1846–8. link1

[20] Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet 2018;50(1):12–9. link1

[21] Xu Q, Xie W. Epigenome in early mammalian development: inheritance, reprogramming and establishment. Trends Cell Biol 2018;28(3):237–53. link1

[22] Zhou F, Wang R, Yuan P, Ren Y, Mao Y, Li R, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 2019;572(7771):660–4. link1

[23] Hui P. Developmental biology of the placenta. In: Hui P, editor. Gestational trophoblastic disease: diagnostic and molecular genetic pathology. New York: Springer New York; 2012. p. 15–39. link1

[24] Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013;20(9):1131–9. link1

[25] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15–21. link1

[26] Liu Y, Fan X, Wang R, Lu X, Dang Y-L, Wang H, et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 2018;28(8):819–32. link1

[27] Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 2018;563(7731):347–53. link1

[28] Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell 2019;177(7):1888–902. e21. link1

[29] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 2012;16(5):284–7. link1

[30] Chen H, Boutros PC. VennDiagram: a package for the generation of highlycustomizable Venn and Euler diagrams in R. BMC Bioinf 2011;12(1):1–7. link1

[31] Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017;33(18):2938–40. link1

[32] Li C, Zhu Z, Du X, Cao W, Yang F, Zhang X, et al. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology 2017;509:222–31. link1

[33] Spence JS, He R, Hoffmann HH, Das T, Thinon E, Rice CM, et al. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol 2019;15(3):259–68. link1

[34] Goodwin CM, Xu S, Munger J. Stealing the keys to the kitchen: viral manipulation of the host cell metabolic network. Trends Microbiol 2015;23 (12):789–98. link1

[35] Martín-Acebes MA, Merino-Ramos T, Blázquez AB, Casas J, Escribano-Romero E, Sobrino F, et al. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J Virol 2014;88 (20):12041–54. link1

[36] Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature 2017;550 (7675):244–8. link1

[37] Windsperger K, Dekan S, Pils S, Golletz C, Kunihs V, Fiala C, et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod 2017;32 (6):1208–17. link1

[38] Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323(18):1843–4. link1

[39] Choi Y, Bowman JW, Jung JU. Autophagy during viral infection—a doubleedged sword. Nat Rev Microbiol 2018;16(6):341–54. link1

[40] Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 2009;1793 (4):664–73. link1

[41] Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, et al. Autophagic machinery activated by dengue virus enhances virus replication. Virology 2008;374(2):240–8. link1

[42] De Haan CA, Reggiori F. Are nidoviruses hijacking the autophagy machinery?. Autophagy 2008;4(3):276–9. link1

[43] Yang N, Shen HM. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19. Int J Biol Sci 2020;16(10): 1724–31. link1

[44] Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020;181(5):1016–35.e19. link1

Related Research