Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 11, Issue 4 doi: 10.1016/j.eng.2020.07.028

Review of 4Pi Fluorescence Nanoscopy

a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China
b Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
c College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
d MOE Key Laboratory for Biomedical Engineering & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China

# These authors contributed equally to this work.

Received: 2020-03-24 Revised: 2020-07-27 Accepted: 2020-07-28 Available online: 2020-12-09

Next Previous

Abstract

Since the 1990s, continuous technical and scientific advances have defied the diffraction limit in microscopy and enabled three-dimensional (3D) super-resolution imaging. An important milestone in this pursuit is the coherent utilization of two opposing objectives (4Pi geometry) and its combination with super-resolution microscopy. Herein, we review the recent progress in 4Pi nanoscopy, which provides a 3D, non-invasive, diffraction-unlimited, and isotropic resolution in transparent samples. This review includes both the targeted and stochastic switching modalities of 4Pi nanoscopy. The schematics, principles, applications, and future potential of 4Pi nanoscopy are discussed in detail.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 1873;9(1):413–8. German. link1

[ 2 ] Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, et al. From microscopy to nanoscopy via visible light. Light Sci Appl 2013;2(10):e108. link1

[ 3 ] Hell S, Stelzer EHK. Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 1992;9(12):2159–66. link1

[ 4 ] Hell SW. Far-field optical nanoscopy. Science 2007;316(5828):1153–8. link1

[ 5 ] Xu Y, Melia TJ, Toomre DK. Using light to see and control membrane traffic. Curr Opin Chem Biol 2011;15(6):822–30. link1

[ 6 ] Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 2017;18(11):685–701. link1

[ 7 ] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313(5793):1642–5. link1

[ 8 ] Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3(10):793–6. link1

[ 9 ] Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006;91 (11):4258–72. link1

[10] Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 2008;5(6):527–9. link1

[11] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008;319 (5864):810–3. link1

[12] Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, et al. Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 2009;106(9):2995–9. link1

[13] Shechtman Y, Sahl SJ, Backer AS, Moerner WE. Optimal point spread function design for 3D imaging. Phys Rev Lett 2014;113(13):133092. link1

[14] Baddeley D, Cannell MB, Soeller C. Three-dimensional sub-100 nm superresolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res 2011;4(6):589–98. link1

[15] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994;19(11):780–2. link1

[16] Hofmann M, Eggeling C, Jakobs S, Hell SW. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 2005;102(49):17565–9. link1

[17] Harke B, Ullal CK, Keller J, Hell SW. Three-dimensional nanoscopy of colloidal crystals. Nano Lett 2008;8(5):1309–13. link1

[18] Wildanger D, Medda R, Kastrup L, Hell SW. A compact STED microscope providing 3D nanoscale resolution. J Microsc 2009;236(1):35–43. link1

[19] Hell SW, Stelzer EHK. Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 1992;9(12):2159–66. link1

[20] Hell SW, inventor; Hell SW, assignee. Doppelkonfokales Rastermikroskop. German patent DE4040441A. 1992 Jul 2.

[21] Bewersdorf J, Schmidt R, Hell SW. Comparison of I5M and 4Pi-microscopy. J Microsc 2006;222(Pt 2):105–17. link1

[22] Gustafsson MG, Agard DA, Sedat JW. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 1999;195(Pt 1):10–6. link1

[23] Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 2008;5 (6):539–44. link1

[24] Böhm U, Hell SW, Schmidt R. 4Pi-RESOLFT nanoscopy. Nat Commun 2016;7 (1):10504. link1

[25] Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 2009;106(9):3125–30. link1

[26] Aquino D, Schönle A, Geisler C, Middendorff CV, Wurm CA, Okamura Y, et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 2011;8(4):353–9. link1

[27] Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC, Kromann EB, et al. Ultra-high resolution 3D imaging of whole cells. Cell 2016;166(4):1028–40. link1

[28] Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MG. I5 S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 2008;94(12):4971–83. link1

[29] Visscher K, Brakenhoff GJ, Visser TD. Fluorescence saturation in confocal microscopy. J Microsc 1994;175(2):162–5. link1

[30] Yamanaka M, Saito K, Smith NI, Kawata S, Nagai T, Fujita K. Saturated excitation of fluorescent proteins for subdiffraction-limited imaging of living cells in three dimensions. Interface Focus 2013;3(5):20130007. link1

[31] Gustafsson MGL. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 2005;102(37):13081–6. link1

[32] Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 1999;24(14):954–6. link1

[33] Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 2000;97(15):8206–10. link1

[34] Hao X, Kuang C, Wang T, Liu X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J Opt 2010;12(11):115707. link1

[35] Dyba M, Hell SW. Focal spots of size k/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys Rev Lett 2002;88(16):163901. link1

[36] Dyba M, Jakobs S, Hell SW. Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 2003;21(11):1303–4. link1

[37] Baddeley D, Carl C, Cremer C. 4Pi microscopy deconvolution with a variable point-spread function. Appl Opt 2006;45(27):7056–64. link1

[38] Hao X, Allgeyer ES, Booth MJ, Bewersdorf J. Point-spread function optimization in isoSTED nanoscopy. Opt Lett 2015;40(15):3627–30. link1

[39] Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW. Resolution scaling in STED microscopy. Opt Express 2008;16(6):4154–62. link1

[40] Ullal CK, Schmidt R, Hell SW, Egner A. Block copolymer nanostructures mapped by far-field optics. Nano Lett 2009;9(6):2497–500. link1

[41] Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol 1981;91 (3):227s–55s. link1

[42] Hua Y, Sinha R, Thiel CS, Schmidt R, Hüve J, Martens H, et al. A readily retrievable pool of synaptic vesicles. Nat Neurosci 2011;14(7):833–9. link1

[43] Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. Mitochondrial cristae revealed with focused light. Nano Lett 2009;9(6):2508–10. link1

[44] Qu L, Akbergenova Y, Hu Y, Schikorski T. Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function. J Comp Neurol 2009;514(4):343–52. link1

[45] Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018;361(6405):880–7. link1

[46] Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, et al. Super-resolution microscopy demystified. Nat Cell Biol 2019;21(1):72–84. link1

[47] Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P. Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 2014;123:273–94. link1

[48] Von Middendorff C, Egner A, Geisler C, Hell SW, Schönle A. Isotropic 3D Nanoscopy based on single emitter switching. Opt Express 2008;16 (25):20774–88. link1

[49] Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, et al. Dualcolor superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 2007;104(51):20308–13. link1

[50] Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature 2010;468 (7323):580–4. link1

[51] Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF, Davidson MW, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 2015;17(7):880–92. link1

[52] Zhang Y, Lara-Tejero M, Bewersdorf J, Galán JE. Visualization and characterization of individual type III protein secretion machines in live bacteria. Proc Natl Acad Sci USA 2017;114(23):6098–103. link1

[53] Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, et al. Imaging the post-fusion release and capture of a vesicle membrane protein. Nat Commun 2012;3(1):1154. link1

[54] Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan SD, et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 2014;343(6171):653–6. link1

[55] Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genet 2015;11(4):e1005128. link1

[56] Del Viso F, Huang F, Myers J, Chalfant M, Zhang Y, Reza N, et al. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev Cell 2016;38(5):478–92. link1

[57] Karanastasis AA, Zhang Y, Kenath GS, Lessard MD, Bewersdorf J, Ullal CK. 3D mapping of nanoscale crosslink heterogeneities in microgels. Mater Horiz 2018;5(6):1130–6. link1

[58] Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 2011;31 (24):4994–5010. link1

[59] Zhang Y, Schroeder LK, Lessard MD, Kidd P, Chung J, Song Y, et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat Methods 2020;17(2):225–31. link1

[60] Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci USA 2012;109 (16):6136–41. link1

[61] Sochacki KA, Shtengel G, van Engelenburg SB, Hess HF, Taraska JW. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods 2014;11(3):305–8. link1

[62] Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat Methods 2018;15(5):367–9. link1

[63] Liu S, Huang F. Enhanced 4Pi single-molecule localization microscopy with coherent pupil based localization. Commun Biol 2020;3(1):220. link1

[64] Li Y, Buglakova E, Zhang Y, Thevathasan VJ, Bewersdorf J, Ries J. Accurate 4Pi single-molecule localization using an experimental PSF model. Opt Lett 2020;45(13):1–12. link1

[65] Lakadamyali M, Cosma MP. Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 2020;17(4):371–9. link1

[66] Sharonov A, Hochstrasser RM. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 2006;103 (50):18911–6. link1

[67] Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC. Singlemolecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 2010;10(11):4756–61. link1

[68] Nieves DJ, Gaus K, Baker MAB. DNA-based super-resolution microscopy: DNAPAINT. Genes 2018;9(12):E621

[69] Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science 2015;347(6221):543–8. link1

[70] Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods 2019;16(1):33–41. link1

[71] Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017;355(6325):606–12. link1

[72] Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 2020;17(2):217–24. link1

[73] Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydın H, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods 2019;16(1):103–10. link1

[74] Jin L, Liu B, Zhao F, Hahn S, Dong B, Song R, et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat Commun 2020;11(1):1934. link1

[75] Schlichthaerle T, Strauss MT, Schueder F, Auer A, Nijmeijer B, Kueblbeck M, et al. Direct visualization of single nuclear pore complex proteins using genetically-encoded probes for DNA-PAINT. Angew Chem Int Ed Engl 2019;58 (37):13004–8. link1

[76] Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 2014;11(3):313–8. link1

[77] Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 2019;19 (1):500–5. link1

[78] Gao M, Maraspini R, Beutel O, Zehtabian A, Eickholt B, Honigmann A, et al. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 2018;12(5):4178–85. link1

[79] Tong Z, Beuzer P, Ye Q, Axelrod J, Hong Z, Cang H. Ex-STORM: expansion single molecule super-resolution microscopy. bioRxiv049403.

[80] Baddeley D, Batram C, Weiland Y, Cremer C, Birk UJ. Nanostructure analysis using spatially modulated illumination microscopy. Nat Protoc 2007;2 (10):2640–6. link1

[81] Hao X, Allgeyer ES, Lee DR, Antonello J, Watters K, Gerdes JA, et al. Threedimensional adaptive optical nanoscopy for thick specimen imaging at sub50-nm resolution. Nat Methods 2021;18(6):688–93.

[82] Curdt F, Herr SJ, Lutz T, Schmidt R, Engelhardt J, Sahl SJ, et al. IsoSTED nanoscopy with intrinsic beam alignment. Opt Express 2015;23 (24):30891–903. link1

[83] Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo PJ, et al. Mirror-enhanced super-resolution microscopy. Light Sci Appl 2016;5(6):e16134.

[84] Schnitzbauer J, McGorty R, Huang B. 4Pi fluorescence detection and 3D particle localization with a single objective. Opt Express 2013;21(17):19701–8. link1

[85] Hao X, Antonello J, Allgeyer ES, Bewersdorf J, Booth MJ. Aberrations in 4Pi microscopy. Opt Express 2017;25(13):14049–58. link1

[86] Booth MJ. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl 2014;3(4):e165. link1

Related Research