Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 1 doi: 10.1016/j.eng.2020.09.014

Recent Advances in Electrode Design Based on One-Dimensional Nanostructure Arrays for Proton Exchange Membrane Fuel Cell Applications

School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK

Received: 2019-12-30 Revised: 2020-07-24 Accepted: 2020-09-15 Available online: 2020-12-23

Next Previous

Abstract

One-dimensional (1D) Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction (ORR). Advances in three-dimensional (3D) ordered electrodes based on 1D Pt-based nanostructure arrays have revealed great potential for developing highperformance proton exchange membrane fuel cells (PEMFCs), in particular for addressing the mass transfer and durability challenges of Pt/C nanoparticle electrodes. This paper reviews recent progress in the field, with a focus on the 3D ordered electrodes based on self-standing Pt nanowire arrays. Nanostructured thin-film (NSTF) catalysts are discussed along with electrodes made from Pt-based nanoparticles deposited on arrays of polymer nanowires, and carbon and TiO2 nanotubes. Achievements on electrodes from Pt-based nanotube arrays are also reviewed. The importance of size, surface properties, and the distribution control of 1D catalyst nanostructures is indicated. Finally, challenges and future development opportunities are addressed regarding increasing electrochemical surface area (ECSA) and quantifying oxygen mass transport resistance for 1D nanostructure array electrodes.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[ 1 ] Di Marcoberardino G, Chiarabaglio L, Manzolini G, Campanari S. A Technoeconomic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications. Appl Energy 2019;239:692–705. link1

[ 2 ] Barbir F. PEM fuel cells: theory and practice. 2nd ed. Boston: Elsevier Academic Press; 2013. link1

[ 3 ] Papageorgopoulos D. Fuel cell R&D overview [presentation]. In: Proceedings of the 2019 Annual Merit Review and Peer Evaluation Meeting; 2019 Apr 29–May 1; Crystal City, VA, USA; 2019.

[ 4 ] Stephens IEL, Rossmeisl J, Chorkendorff I. Toward sustainable fuel cells. Science 2016;354(6318):1378–9. link1

[ 5 ] Gittleman CS, Kongkanand A, Masten D, Gu W. Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells. Curr Opin Electrochem 2019;18:81–9. link1

[ 6 ] Wang W, Lv F, Lei Bo, Wan S, Luo M, Guo S. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv Mater 2016;28(46):10117–41. link1

[ 7 ] Kiani M, Zhang J, Luo Y, Jiang C, Fan J, Wang G, et al. Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Energy Chem 2018;27(4):1124–39. link1

[ 8 ] Escudero-Escribano M, Jensen KD, Jensen AW. Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Curr Opin Electrochem 2018;8:135–46. link1

[ 9 ] Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 2016;116(6):3594–657. link1

[10] Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu CJ. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 2017;5 (5):1808–25. link1

[11] Li C, Tan H, Lin J, Luo X, Wang S, You J, et al. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018;21:91–105. link1

[12] Li Y, Guo S. Noble metal-based 1D and 2D electrocatalytic nanomaterials: recent progress, challenges and perspectives. Nano Today 2019;28:100774. link1

[13] Pan L, Ott S, Dionigi F, Strasser P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr Opin Electrochem 2019;18:61–71. link1

[14] Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016;354(6318):1414–9. link1

[15] Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012;486(7401):43–51. link1

[16] Lu Y, Du S, Steinberger-Wilckens R. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—a review. Appl Catal B 2016;199:292–314. link1

[17] Wang G, Zou L, Huang Q, Zou Z, Yang H. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications. J Mater Chem A 2019;7(16):9447–77. link1

[18] Middelman E. Improved PEM fuel cell electrodes by controlled self-assembly. Fuel Cells Bull 2002;2002(11):9–12. link1

[19] Debe MK. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J Electrochem Soc 2013;160(6): F522–34. link1

[20] Van der Vliet DF, Wang C, Tripkovic D, Strmcnik D, Zhang XF, Debe MK, et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Mater 2012;11(12):1051–8. link1

[21] Chan K, Eikerling M. Impedance model of oxygen reduction in water-flooded pores of ionomer-free PEFC catalyst layers. J Electrochem Soc 2011;159(2): B155–64. link1

[22] Jiang S, Yi B, Cao L, Song W, Zhao Q, Yu H, et al. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thinfilm fuel cell electrodes. J Power Sources 2016;329:347–54. link1

[23] Xia Z, Wang S, Jiang L, Sun H, Liu S, Fu X, et al. Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix. Sci Rep 2015;5(1):16100. link1

[24] Sun R, Xia Z, Shang L, Fu X, Li H, Wang S, et al. Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes. J Mater Chem A 2017;5(29):15260–5. link1

[25] Fu X, Wang S, Xia Z, Li Y, Jiang L, Sun G. Aligned polyaniline nanorods in situ grown on gas diffusion layer and their application in polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 2016;41(5):3655–63. link1

[26] Murata S, Imanishi M, Hasegawa S, Namba R. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells. J Power Sources 2014;253:104–13. link1

[27] Zhang W, Chen J, Minett AI, Swiegers GF, Too CO, Wallace GG. Novel ACNT arrays based MEA structure-nano-Pt loaded ACNT/Nafion/ACNT for fuel cell applications. Chem Commun 2010;46(26):4824–6. link1

[28] Tian ZQ, Lim SH, Poh CK, Tang Z, Xia Z, Luo Z, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv Energy Mater 2011;1(6):1205–14. link1

[29] Liu J, Yuan Y, Bashir S. Functionalization of aligned carbon nanotubes to enhance the performance of fuel cell. Energies 2013;6(12):6476–86. link1

[30] Yuan Y, Smith JA, Goenaga G, Liu DJ, Luo Z, Liu J. Platinum decorated aligned carbon nanotubes: electrocatalyst for improved performance of proton exchange membrane fuel cells. J Power Sources 2011;196(15):6160–7. link1

[31] Zhu J, He G, Liang L, Wan Q, Shen PK. Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim Acta 2015;158:374–82. link1

[32] Van Hooijdonk E, Bittencourt C, Snyders R, Colomer JF. Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 2013;4:129–52. link1

[33] Mardle P, Ji X, Wu J, Guan S, Dong H, Du S. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl Catal B 2020;260:118031. link1

[34] Zhang C, Yu H, Li Y, Song W, Yi B, Shao Z. Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells. Electrochim Acta 2012;80:1–6. link1

[35] Zhang C, Yu H, Li Y, Gao Y, Zhao Y, Song W, et al. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. Chem Sus Chem 2013;6(4):659–66. link1

[36] Zhang C, Yu H, Fu Li, Xiao Yu, Gao Y, Li Y, et al. An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 2015;153:361–9. link1

[37] Jiang S, Yi B, Zhang C, Liu S, Yu H, Shao Z. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells. J Power Sources 2015;276:80–8. link1

[38] Meier JC, Galeano C, Katsounaros I, Witte J, Bongard HJ, Topalov AA, et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 2014;5:44–67. link1

[39] Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, twodimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 2012;57(4):724–803. link1

[40] Wang J, Gu H. Novel metal nanomaterials and their catalytic applications. Molecules 2015;20(9):17070–92. link1

[41] Wang M, Zhang H, Thirunavukkarasu G, Salam I, Varcoe JR, Mardle P, et al. Ionic liquid-modified microporous ZnCoNC-based electrocatalysts for polymer electrolyte fuel cells. ACS Energy Lett 2019;4(9):2104–10. link1

[42] Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 2005;56(1-2):9–35. link1

[43] St-Pierre J, Zhai Y, Angelo MS. Effect of selected airborne contaminants on PEMFC performance. J Electrochem Soc 2014;161(3):F280–90. link1

[44] St-Pierre J, Zhai Y. Impact of the cathode Pt loading on PEMFC contamination by several airborne contaminants. Molecules 2020;25(5):1060. link1

[45] Fidiani E, Thirunavukkarasu G, Li Y, Chiu YL, Du S. Ultrathin AgPt alloy nanorods as low-cost oxygen reduction reaction electrocatalysts in proton exchange membrane fuel cells. J Mater Chem A 2020;8(23):11874–83. link1

[46] Sun S, Zhang G, Geng D, Chen Y, Li R, Cai M, et al. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew Chem Int Ed 2011;50(2):422–6. link1

[47] Meng H, Zhan Y, Zeng D, Zhang X, Zhang G, Jaouen F. Factors influencing the growth of Pt nanowires via chemical self-assembly and their fuel cell performance. Small 2015;11(27):3377–86. link1

[48] Sun S, Yang D, Zhang G, Sacher E, Dodelet JP. Synthesis and characterization of platinum nanowire–carbon nanotube heterostructures. Chem Mater 2007;19 (26):6376–8. link1

[49] Du S. Pt-based nanowires as electrocatalysts in proton exchange fuel cells. Int J Low-Carbon Technol 2012;7(1):44–54. link1

[50] Du S, Koenigsmann C, Sun S. One-dimensional nanostructures for PEM fuel cell applications. London: Academic Press; 2017. link1

[51] Du S. A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires. J Power Sources 2010;195(1):289–92. link1

[52] Boronat-González A, Herrero E, Feliu JM. Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. J Solid State Electrochem 2014;18 (5):1181–93. link1

[53] Wissel K, Brandes G, Pütz N, Angrisani GL, Thieleke J, Lenarz T, et al. Platinum corrosion products from electrode contacts of human cochlear implants induce cell death in cell culture models. PLoS ONE 2018;13(5):e0196649. link1

[54] Du S, Millington B, Pollet BG. The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells. Int J Hydrogen Energy 2011;36 (7):4386–93. link1

[55] Sun S, Jaouen F, Dodelet JP. Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Adv Mater 2008;20(20):3900–4. link1

[56] Li B, Higgins DC, Xiao Q, Yang D, Zhng C, Cai M, et al. The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. Appl Catal B 2015;162:133–40. link1

[57] Du S, Pollet BG. Catalyst loading for Pt-nanowire thin film electrodes in PEFCs. Int J Hydrogen Energy 2012;37(23):17892–8. link1

[58] Lu Y, Steinberger-Wilckens R, Du S. Evolution of gas diffusion layer structures for aligned Pt nanowire electrodes in PEMFC applications. Electrochim Acta 2018;279:99–107. link1

[59] Lu Y, Du S, Steinberger-Wilckens R. Temperature-controlled growth of singlecrystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells. Appl Catal B 2015;164:389–95. link1

[60] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010;4(1):547–55. link1

[61] Du S, Lu Y, Steinberger-Wilckens R. PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 2014;79:346–53. link1

[62] Mardle P, Fernihough O, Du S. Evaluation of the scaffolding effect of Pt nanowires supported on reduced graphene oxide in PEMFC electrodes. Coatings 2018;8(2):48. link1

[63] Lu Y, Du S, Steinberger-Wilckens R. Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl Catal B 2016;187:108–14. link1

[64] Du S, Lin K, Malladi SK, Lu Y, Sun S, Xu Q, et al. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Sci Rep 2015;4(1):6439. link1

[65] Lin K, Lu Y, Du S, Li X, Dong H. The effect of active screen plasma treatment conditions on the growth and performance of Pt nanowire catalyst layer in DMFCs. Int J Hydrogen Energy 2016;41(18):7622–30. link1

[66] Sui S, Zhuo X, Su K, Yao X, Zhang J, Du S, et al. In situ grown nanoscale platinum on carbon powder as catalyst layer in proton exchange membrane fuel cells (PEMFCs). J Energy Chem 2013;22(3):477–83. link1

[67] Yao X, Su K, Sui S, Mao L, He A, Zhang J, et al. A novel catalyst layer with carbon matrix for Pt nanowire growth in proton exchange membrane fuel cells (PEMFCs). Int J Hydrogen Energy 2013;38(28):12374–8. link1

[68] Su K, Sui S, Yao X, Wei Z, Zhang J, Du S. Controlling Pt loading and carbon matrix thickness for a high performance Pt-nanowire catalyst layer in PEMFCs. Int J Hydrogen Energy 2014;39(7):3397–403. link1

[69] Su K, Yao X, Sui S, Wei Z, Zhang J, Du S. Ionomer content effects on the electrocatalyst layer with in-situ grown Pt nanowires in PEMFCs. Int J Hydrogen Energy 2014;39(7):3219–25. link1

[70] Su K, Yao X, Sui S, Wei Z, Zhang J, Du S. Matrix material study for in situ grown Pt nanowire electrocatalyst layer in proton exchange membrane fuel cells (PEMFCs). Fuel Cells 2015;15(3):449–55. link1

[71] Wei Z, He A, Su K, Sui S. Carbon matrix effects on the micro-structure and performance of Pt nanowire cathode prepared by decal transfer method. J Energy Chem 2015;24(2):213–8. link1

[72] Wei Z, Su K, Sui S, He A, Du S. High performance polymer electrolyte membrane fuel cells (PEMFCs) with gradient Pt nanowire cathodes prepared by decal transfer method. Int J Hydrogen Energy 2015;40(7):3068–74. link1

[73] Sui S, Wei Z, Su K, He A, Wang X, Su Y, et al. Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for polymer electrolyte membrane fuel cells (PEMFCs). Int J Hydrogen Energy 2018;43(43):20041–9. link1

[74] Galbiati S, Morin A, Pauc N. Supportless platinum nanotubes array by atomic layer deposition as PEM fuel cell electrode. Electrochim Acta 2014;125:107–16. link1

[75] Galbiati S, Morin A, Pauc N. Nanotubes array electrodes by Pt evaporation: half-cell characterization and PEM fuel cell demonstration. Appl Catal B 2015;165:149–57. link1

[76] Marconot O, Pauc N, Buttard D, Morin A. Vertically aligned platinum copper nanotubes as PEM fuel cell cathode: elaboration and fuel cell test. Fuel Cells 2018;18(6):723–30. link1

[77] Zeng Y, Shao Z, Zhang H, Wang Z, Hong S, Yu H, et al. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 2017;34:344–55. link1

[78] Mardle P, Du S. Annealing behaviour of Pt and PtNi nanowires for proton exchange membrane fuel cells. Materials 2018;11(8):1473. link1

[79] Khan A, Nath BK, Chutia J. Conical nano-structure arrays of Platinum cathode catalyst for enhanced cell performance in PEMFC (proton exchange membrane fuel cell). Energy 2015;90:1769–74. link1

[80] Muench F. Metal nanotube/nanowire-based unsupported network electrocatalysts. Catalysts 2018;8(12):597. link1

[81] Hou Y, Deng H, Pan F, Chen W, Du Q, Jiao K. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Appl Energy 2019;253:113561. link1

[82] Darling R. Modeling air electrodes with low platinum loading. J Electrochem Soc 2019;166(7):F3058–64. link1

[83] Wang B, Xie B, Xuan J, Jiao K. AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Convers Manage 2020;205:112460. link1

[84] Owejan JP, Owejan JE, Gu W. Impact of platinum loading and catalyst layer structure on PEMFC performance. J Electrochem Soc 2013;160(8):F824–33. link1

[85] Dogan DC, Cho S, Hwang SM, Kim YM, Guim H, Yang TH, et al. Highly durable supportless Pt hollow spheres designed for enhanced oxygen transport in cathode catalyst layers of proton exchange membrane fuel cells. ACS Appl Mater Interfaces 2016;8(41):27730–9. link1

[86] Weber AZ, Kusoglu A. Unexplained transport resistances for low-loaded fuelcell catalyst layers. J Mater Chem A 2014;2(41):17207–11. link1

[87] Kongkanand A, Mathias MF. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 2016;7(7):1127–37. link1

[88] Ott S, Orfanidi A, Schmies H, Anke B, Nong HN, Hübner J, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat Mater 2020;19 (1):77–85. link1

[89] Zeng H, Huang J, Tian Y, Li L, Tirrell MV, Israelachvili JN. Adhesion and detachment mechanisms between polymer and solid substrate surfaces: using polystyrene–mica as a model system. Macromolecules 2016;49(14):5223–31. link1

[90] Holdcroft S. Fuel cell catalyst layers: a polymer science perspective. Chem Mater 2014;26(1):381–93. link1

[91] Zhang GR, Munoz M, Etzold BJM. Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids. Angew Chem Int Ed 2016;55(6):2257–61. link1

[92] Snyder J, Livi K, Erlebacher J. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv Funct Mater 2013;23(44):5494–501. link1

Related Research