Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 11, Issue 4 doi: 10.1016/j.eng.2020.10.014

Omnidirectional Antenna Diversity System for High-Speed Onboard Communication

a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 10084, China

Received: 2020-07-21 Revised: 2020-10-01 Accepted: 2020-10-15 Available online: 2020-12-29

Next Previous

Abstract

In this article, an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems. The propounded antenna comprises a probe-fed cavity for horizontally polarized radiation and a microstrip-fed slot for vertical polarization. Double-layer metasurfaces are properly designed as artificial magnetic conductor boundaries with direct metal-mountable onboard installation and compact sizes. An attached wedge-shaped block is utilized for windage reduction in hydrodynamics. The propounded antenna is fabricated for design verification, and the experimental results agree well with the simulated ones. For vertical polarization, the operating bandwidth is in the range of 2.37–2.55 GHz, and the realized gain variation in the azimuthal radiation pattern is 3.67 decibels (dB). While an impedance bandwidth in the range of 2.45–2.47 GHz and a gain variation of 3.71 dB are also achieved for horizontal polarization. A port isolation more than 33 dB is obtained in a compact volume of 0.247λ0 × 0.345λ0 × 0.074λ0, where λ0 represents the wavelength in vacuum at the center frequency, wherein the wedge-shaped block is included. The propounded diversity antenna has electromagnetic and aerodynamic merits, and exhibits an excellent potential for high-speed onboard communication.

 

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

References

[ 1 ] Qin F, Gao SS, Luo Q, Mao CX, Gu C, Wei G, et al. A simple low-cost sharedaperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Trans Antennas Propag 2016;64(7):2914–22. link1

[ 2 ] Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, BernardoClemente B, Zaman AU, Yang J. 88 Ka-band dual-polarized array antenna based on gap waveguide technology. IEEE Trans Antennas Propag 2019;67 (7):4579–88. link1

[ 3 ] Bolt RJ, Cavallo D, Gerini G, Deurloo D, Grooters R, Neto A, et al. Characterization of a dual-polarized connected-dipole array for Ku-band mobile terminals. IEEE Trans Antennas Propag 2016;64(2):591–8. link1

[ 4 ] Yu W, Luo GQ, Yu Y, Pan Y, Cao W, Pan Y, et al. Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors. IEEE Trans Antennas Propag 2019;67(2):1318–22. link1

[ 5 ] He Y, Li Y, Sun W, Zhang Z. Dual-polarized, high-gain, and low-profile magnetic current array antenna. IEEE Trans Antennas Propag 2019;67(2):1312–7. link1

[ 6 ] Yang J, Pantaleev M, Billade B, Ivashina M, Carozzi T, Helldner L, et al. A compact dual-polarized 4-port eleven feed with high sensitivity for reflectors over 0.35–1.05 GHz. IEEE Trans Antennas Propag 2015;63(12):5955–60. link1

[ 7 ] Ha J, Al-Tarifi MA, Filipovic DS. Design of wideband combined annular slotmonopole antenna. IEEE Trans Antennas Propag 2016;64(9):4138–43. link1

[ 8 ] Hong W, Sarabandi K. Low-profile, multi-element, miniaturized monopole antenna. IEEE Trans Antennas Propag 2009;57(1):72–80. link1

[ 9 ] Nguyen-Trong N, Ta SX, Ikram M, Bertling K, Abbosh AM. A low-profile wideband tripolarized antenna. IEEE Trans Antennas Propag 2019;67 (3):1946–51. link1

[10] Byun G, Choo H, Ling H. Optimum placement of DF antenna elements for accurate DOA estimation in a harsh platform environment. IEEE Trans Antennas Propag 2013;61(9):4783–91. link1

[11] Abbosh AM, Bialkowski ME. Design of ultrawideband planar monopole antennas of circular and elliptical shape. IEEE Trans Antennas Propag 2008;56(1):17–23. link1

[12] Ha J, Elmansouri MA, Filipovic DS. A compact ultrawideband reflector antenna: using a wide-band omnidirectional antenna with a mechanically steerable endfire beam to illuminate a half-cut paraboloid reflector. IEEE Antennas Propag Mag 2018;60(3):75–86. link1

[13] Wang J, Shen Z, Zhao L. Wideband dual-polarized antenna for spectrum monitoring systems. Antennas Wirel Propag Lett 2017;16:2236–9. link1

[14] Quan X, Li R. A broadband dual-polarized omnidirectional antenna for base stations. IEEE Trans Antennas Propag 2013;61(2):943–7. link1

[15] Dai XW, Wang ZY, Liang CH, Chen X, Wang LT. Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application. Antennas Wirel Propag Lett 2013;12:1492–5. link1

[16] Yang N, Leung KW, Li WW. Linearly polarized omnidirectional polarizationdiversity dielectric resonator antenna. In: Proceedings of 2019 IEEE Conference on Antenna Measurements and Applications (CAMA); 2019 Oct 23–25; Bali, Indonesia; 2019.

[17] Li W, Leung KW, Yang N. Omnidirectional dielectric resonator antenna with a planar feed for circular polarization diversity design. IEEE Trans Antennas Propag 2018;66(3):1189–97. link1

[18] Martín P, Elena VB, Loredo-Souza AM, Camaño EB. Experimental study of the effects of dish antennas on the wind loading of telecommunication towers. J Wind Eng Ind Aerodyn 2016;149:40–7. link1

[19] Anderson R, Dorrenbacher C, Krausz R, Margerum D. A multiple telemetering antenna system for supersonic aircraft. IRE Trans Antennas Propag 1955;3 (4):173–6. link1

[20] Bhattacharjee S, Maity S, Chaudhuri SRB, Mitra M. A compact dual-band dualpolarized omnidirectional antenna for on-body applications. IEEE Trans Antennas Propag 2019;67(8):5044–53. link1

[21] Li Y, Zhang Z, Feng Z, Iskander MF. Design of omnidirectional dual-polarized antenna in slender and low-profile column. IEEE Trans Antennas Propag 2014;62(4):2323–6. link1

[22] Liu P, Meng Z, Wang L, Zhang Y, Li Y. Omnidirectional dual-polarized saber antenna with low wind drag. IEEE Trans Antennas Propag 2020;68 (1):558–63. link1

[23] Syue CJ, Kehn MNM, Quevedo-Teruel O. Compact mikaelian lens design using metasurface structure. In: Proceedings of 2016 International Symposium on Antennas and Propagation (ISAP); 2016 Oct 24–28; Okinawa, Japan; 2016.

[24] Shang Y, Shen Z. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces. IEEE Trans Antennas Propag 2017;65(5):2386–96. link1

[25] Raad HR, Abbosh AI, Al-Rizzo HM, Rucker DG. Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans Antennas Propag 2013;61 (2):524–31. link1

[26] Morrison FA. An introduction to fluid mechanics. Cambridge: Cambridge University Press; 2013. link1

[27] Presse A, Tarot AC. Circuit model of a double-layer artificial magnetic conductor. Antennas Wirel Propag Lett 2016;15:1061–4. link1

[28] Kuse R, Hori T, Fujimoto M, Seki T, Sato K, Oshima I. Equivalent circuit analysis for double layer patch type AMC in consideration of mutual coupling between layers. In: Proceedings of 2013 Asia-Pacific Microwave Conference Proceedings (APMC); 2013 Nov 5–8; Seoul, Republic of Korea; 2013.

[29] Liu P, Li Y, Zhang Z, Feng Z. Omnidirectional dual-polarized antenna with sabre-like structure. IEEE Trans Antennas Propag 2017;65(6):3221–5. link1

Related Research