Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 1 doi: 10.1016/j.eng.2020.11.001

Polyvinylamine-Based Facilitated Transport Membranes for Post-Combustion CO2 Capture: Challenges and Perspectives from Materials to Processes

a Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
b Department of Chemical Engineering, Guangdong Technion Israel Institute of Technology (GTIIT), Shantou 515063, China

Received: 2019-05-26 Revised: 2019-10-29 Accepted: 2019-11-19 Available online: 2020-11-13

Next Previous

Abstract

Carbon dioxide (CO2) capture by gas-separation membranes has become increasingly attractive due to its high energy efficiency, relatively low cost, and environmental impact. Polyvinylamine (PVAm)-based facilitated transport (FT) membranes were developed in the last decade for CO2 capture. This work discusses the challenges of applying PVAm-based FT membranes from materials to processes for postcombustion CO2 capture in power plants and cement factories. Experiences learned from a pilot demonstration system can be used to guide the design of other membranes for CO2 capture. The importance of module and process design is emphasized in the achievement of a high-performance membrane system. Moreover, the results from process simulation and cost estimation indicate that a three-stage membrane system is feasible for achieving a high CO2 purity of 95 vol%. The specific CO2 capture cost was found to significantly depend on the required CO2 capture ratio, and a moderate CO2 capture ratio of 50% presented a cost of 63.7 USD per tonne CO2 captured. Thus, FT membrane systems were found to be more competitive for partial CO2 capture.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] He X. A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energyintensive industries. Energy Sustain Soc 2018;8(1):34. link1

[ 2 ] He X, Yu Q, Hägg MB. CO2 capture. In: Hoek EMV, Tarabara VV, editors. Encyclopedia of membrane science and technology. Hoboken: John Wiley & Sons, Inc.; 2013. p. 1–29. link1

[ 3 ] Anselmi H, Mirgaux O, Bounaceur R, Patisson F. Simulation of post-combustion CO2 capture, a comparison among absorption, adsorption and membranes. Appl Phys Lett 2019;42(4):797–804. link1

[ 4 ] Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renew Sustain Energy Rev 2018;96:502–25. link1

[ 5 ] Anthony JL, Maginn EJ, Brennecke JF. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 2002;106(29):7315–20. link1

[ 6 ] Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2017;2(8):17045. link1

[ 7 ] Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, et al. Carbon dioxide capture in metal–organic frameworks. Chem Rev 2012;112 (2):724–81. link1

[ 8 ] Kazemi S, Safarifard V. Carbon dioxide capture in MOFs: the effect of ligand functionalization. Polyhedron 2018;154:236–51. link1

[ 9 ] Li J, Zhang H, Gao Z, Fu J, Ao W, Dai J. CO2 capture with chemical looping combustion of gaseous fuels: an overview. Energy Fuels 2017;31(4):3475–524. link1

[10] Mantripragada HC, Rubin ES. Chemical looping for pre-combustion and postcombustion CO2 capture. Energy Procedia 2017;114:6403–10. link1

[11] Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 2012;51 (4):1438–63. link1

[12] He X. Membranes for natural gas sweetening. In: Drioli E, Giorno L, editors. Encyclopedia of membranes. Berlin: Springer; 2016. p. 1266–7. link1

[13] Roussanaly S, Anantharaman R, Lindqvist K, Zhai H, Rubin E. Membrane properties required for post-combustion CO2 capture at coal-fired power plants. J Membr Sci 2016;511:250–64. link1

[14] Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES. Membranebased carbon capture from flue gas: a review. J Clean Prod 2015;103:286–300. link1

[15] Prasetya N, Donose BC, Ladewig BP. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. J Mater Chem A 2018;6(34):16390–402. link1

[16] Merkel TC, Wei X, He Z, White LS, Wijmans JG, Baker RW. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants. Ind Eng Chem Res 2013;52(3):1150–9. link1

[17] He X, Lindbråthen A, Kim TJ, Hägg MB. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. IJGGC 2017;64:323–32. link1

[18] Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. IJGGC 2016;53:56–64. link1

[19] Kim TJ, Vrålstad H, Sandru M, Hägg MB. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci 2013;428:218–24. link1

[20] Deng L, Kim TJ, Hägg MB. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Membr Sci 2009;340(1–2):154–63. link1

[21] Tong Z, Ho WSW. Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol 2017;52(2):156–67. link1

[22] Qiao Z, Zhao S, Sheng M, Wang J, Wang S, Wang Z, et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat Mater 2019;18(2):163–8. link1

[23] Tong Z, Ho WSW. New sterically hindered polyvinylamine membranes for CO2 separation and capture. J Membr Sci 2017;543:202–11. link1

[24] Shen Y, Wang H, Liu J, Zhang Y. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain Chem Eng 2015;3(8):1819–29. link1

[25] Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater 2017;18(1):950–8. link1

[26] Kim TJ, Li B, Hägg MB. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B 2004;42(23):4326–36. link1

[27] Sandru M, Kim TJ, Capala W, Huijbers M, Hägg MB. Pilot scale testing of polymeric membranes for CO2 capture from coal fired power plants. Energy Procedia 2013;37:6473–80. link1

[28] Hägg MB, He X, Sarfaraz V, Sandru M, Kim TJ. CO2 capture using a membrane pilot process at cement factory. In: Proceedings of the 8th Trondheim CCS Conference; 2015 Jun 16–18; Trondheim, Norway; 2015. link1

[29] Hägg MB, Lindbråthen A, He X, Nodeland SG, Cantero T. Pilot demonstrationreporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia 2017;114:6150–65. link1

[30] Chu Y, Lindbråthen A, Lei L, He X, Hillestad M. Mathematical modeling and process parametric study of CO2 removal from natural gas by hollow fiber membranes. Chem Eng Res Des 2019;148:45–55. link1

[31] Han Y, Wu D, Ho WSW. Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Membr Sci 2019;573:476–84. link1

[32] Han Y, Salim W, Chen KK, Wu D, Ho WSW. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J Membr Sci 2019;575:242–51. link1

[33] Hägg MB, Kim TJ, Li B, inventors. Membrane for separating CO2 and process for the production thereof. WIPO patent WO 2005089907A1. 2005 Sep 29.

[34] Deng L. Development of novel PVAm/PVA blend FSC membrane for CO2 capture [dissertation]. Trondheim: Norwegian University of Science and Technology; 2009. link1

[35] He X, Fu C, Hägg MB. Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane. Chem Eng J 2015;268:1–9. link1

[36] Robeson LM. The upper bound revisited. J Membr Sci 2008;320(1–2):390–400. link1

[37] Roussanaly S, Anantharaman R. Cost-optimal CO2 capture ratio for membranebased capture from different CO2 sources. Chem Eng J 2017;327:618–28. link1

[38] Grainger D. Development of carbon membranes for hydrogen recovery [dissertation]. Trondheim: Norwegian University of Science and technology; 2007. link1

[39] Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D. Analysis, synthesis, and design of chemical processes. 4th ed. New Jersy: Pearson Education; 2013. link1

[40] He X, Hägg MB. Energy efficient process for CO2 capture from flue gas with novel fixed-site-carrier membranes. Energy Procedia 2014;63:174–85. link1

[41] Hussain A, Farrukh S, Minhas FT. Two-stage membrane system for postcombustion CO2 capture application. Energy Fuels 2015;29(10):6664–9. link1

Related Research