Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 2 doi: 10.1016/j.eng.2021.01.001

Current Developments in the Stable Production of Human Induced Pluripotent Stem Cells

Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan

Received: 2019-03-13 Revised: 2020-05-10 Accepted: 2020-06-30 Available online: 2021-01-14

Next Previous

Abstract

Induced pluripotent stem cells (iPSCs) are considered to be ideal and promising cell sources for various applications such as regenerative medicine and drug screening. However, effective mass production systems for the stable supply of desired numbers of iPSCs are yet to be developed. This review introduces the various approaches that are currently available for stable iPSC production. We start by discussing the limiting factors to be controlled during iPSC culture, such as nutrient supply, waste removal, and oxygen availability. We then introduce recent investigations on iPSC culture systems based on adhesion, suspension, and scaffolds. We also discuss the downstream processes that follow the culture process, such as filling and freezing processes, which limit the production scale due to decreased cell viability during suspension in cryopreservation medium. Finally, we summarize the possibility of the stable mass production of iPSCs and highlight the limitations that remain to be overcome. We suggest that multidisciplinary investigations are essential to understand the different factors that influence cell growth and quality in order to obtain an optimal and stable iPSC mass production system.

Figures

Fig. 1

References

[ 1 ] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126 (4):663–76. link1

[ 2 ] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861–72. link1

[ 3 ] Uto S, Nishizawa S, Hikita A, Takato T, Hoshi K. Application of induced pluripotent stem cells for cartilage regeneration in CLAWN miniature pig osteochondral replacement model. Regen Ther 2018;9:58–70. link1

[ 4 ] Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014;32(11):1121–33. link1

[ 5 ] Bertolotti E, Neri A, Camparini M, Macaluso C, Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog Retin Eye Res 2014;42:130–44. link1

[ 6 ] Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: prospects and challenges as a source of cardiomyocytes for in vitro modeling and cellbased cardiac repair. Adv Drug Deliver Rev 2016;96:3–17. link1

[ 7 ] Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, et al. Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 2019;24 (4):992–9. link1

[ 8 ] Post MJ. Cultured meat from stem cells: challenges and prospects. Meat Sci 2012;92(3):297–301. link1

[ 9 ] Zweigerdt R. Large scale production of stem cells and their derivatives. In: Martin U, editor. Engineering of stem cells. Advances in biochemical engineering/biotechnology. Berlin: Springer; 2009. p. 201–35. link1

[10] Hassan S, Simaria AS, Varadaraju H, Gupta S, Warren K, Farid SS. Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regen Med 2015;10(5):591–609. link1

[11] Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, et al. Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 2014;111(1):69–83. link1

[12] Li Y, Ma T. Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. BioRes Open Access 2012;1(5):205–14. link1

[13] Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, et al. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol Bioeng 2015;112(2):308–21. link1

[14] Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA, Ramalho-Santos J, et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 2011;6(6):e20914. link1

[15] Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 2012;22(1):168–77. link1

[16] Lees JG, Gardner DK, Harvey AJ. Pluripotent stem cell metabolism and mitochondria: beyond ATP. Stem Cells Int 2017;2017(6):2874283. link1

[17] Folmes CDL, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012;11(5):596–606. link1

[18] Horiguchi I, Urabe Y, Kimura K, Sakai Y. Effects of glucose, lactate and basic FGF as limiting factors on the expansion of human induced pluripotent stem cells. J Biosci Bioeng 2018;125(1):111–5. link1

[19] Madonna R, Geng YJ, Shelat H, Ferdinandy P, De Caterina R. High glucoseinduced hyperosmolarity impacts proliferation, cytoskeleton remodeling and migration of human induced pluripotent stem cells via aquaporin-1. Biochim Biophys Acta 2014;1842(11):2266–75. link1

[20] Chaudhry MA, Bowen BD, Piret JM. Culture pH and osmolality influence proliferation and embryoid body yields of murine embryonic stem cells. Biochem Eng J 2009;45(2):126–35. link1

[21] Tohyama S, Fujita J, Hishiki T, Matsuura T, Hattori F, Ohno R, et al. Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 2016;23(4):663–74. link1

[22] Kropp C, Kempf H, Halloin C, Robles-Diaz D, Franke A, Scheper T, et al. Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cell Transl Med 2016;5 (10):1289–301. link1

[23] Nath SC, Nagamori E, Horie M, Kino-Oka M. Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture. Bioproc Biosyst Eng 2017;40(1):123–31. link1

[24] Hamon M, Hanada S, Fujii T, Sakai Y. Direct oxygen supply with polydimethylsiloxane (PDMS) membranes induces a spontaneous organization of thick heterogeneous liver tissues from rat fetal liver cells in vitro. Cell Transplant 2012;21(2–3):401–10. link1

[25] Evenou F, Fujii T, Sakai Y. Spontaneous formation of stably-attached and 3Dorganized hepatocyte aggregates on oxygen-permeable polydimethylsiloxane membranes having 3D microstructures. Biomed Microdevices 2010;12(3):465–75. link1

[26] Xiao W, Shinohara M, Komori K, Sakai Y, Matsui H, Osada T. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes. Biotechnol Progr 2014;30 (6):1401–10. link1

[27] Sutherland RM, Sordat B, Bamat J, Gabbert H, Bourrat B, Mueller-Klieser W. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res 1986;46(10):5320–9. link1

[28] Kimura K, Horiguchi I, Kido T, Miyajima A, Sakai Y. Enhanced hepatic differentiation of human iPS cells using gas permeable membrane. Tissue Eng 2019;25(5–6):457–67. link1

[29] Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA 2005;102(13):4783–8. link1

[30] Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, et al. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep 2014;2(5):734–45. Erratum in: Stem Cell Rep 2014;2(5):746. link1

[31] Horiguchi I, Suzuki I, Morimura T, Sakai Y. An orbital shaking culture of mammalian cells in O-shaped vessels to produce uniform aggregates. J Vis Exp 2019;143:e57922. link1

[32] Ohgushi M, Matsumura M, Eiraku M, Murakami K, Aramaki T, Nishiyama A, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 2010;7(2):225–39. link1

[33] Kurosawa H. Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells. J Biosci Bioeng 2012;114(6):577–81. link1

[34] Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2005;2(3):185–90. link1

[35] Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Bioph Res Co 2005;330(3):934–42. link1

[36] Haghighi F, Dahlmann J, Nakhaei-Rad S, Lang A, Kutschka I, Zenker M, et al. bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun Signal 2018;16(1):96. link1

[37] Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating selfrenewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 2012;30(4):623–30. link1

[38] Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, et al. Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA 2008;105(36):13409–14. Erratum in: Proc Natl Acad Sci USA 2008;105(46):18071. link1

[39] Lotz S, Goderie S, Tokas N, Hirsch SE, Ahmad F, Corneo B, et al. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. PLoS ONE 2013;8(2):e56289. link1

[40] Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004;70(3):837–45. link1

[41] Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 2000;97 (21):11307–12. link1

[42] Guo S, Mao X, He F, Liu H, Ming L. Activin A supplement in the hESCs culture enhances the endoderm differentiation efficiency. Cell Biol Int 2014;38 (7):849–56. link1

[43] Li Z, Chen YG. Functions of BMP signaling in embryonic stem cell fate determination. Exp Cell Res 2013;319(2):113–9. link1

[44] Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002;20 (12):1261–4. link1

[45] Bai Q, Ramirez JM, Becker F, Pantesco V, Lavabre-Bertrand T, Hovatta O, et al. Temporal analysis of genome alterations induced by single-cell passaging in human embryonic stem cells. Stem Cells Dev 2015;24(5):653–62. link1

[46] Garitaonandia I, Amir H, Boscolo FS, Wambua GK, Schultheisz HL, Sabatini K, et al. Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS ONE 2015;10(2): e0118307. link1

[47] Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, et al. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 2010;19(8):1231–40. link1

[48] Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M, et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 2012;3(1):1236. Erratum in: Nat Commun 2013;4:1931. link1

[49] Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 2014;4(1):3594. link1

[50] Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods 2011;8(5):424–9. link1

[51] Titus K, Klimovich V, Rothenberg M, Pardo P, Tanner A, Martin G. Closed system cell culture protocol using HYPERStack vessels with gas permeable material technology. J Vis Exp 2010;45:e2499. link1

[52] Abraham EJ, Slater KA, Sanyal S, Linehan K, Flaherty PM, Qian S. Scale-up of mammalian cell culture using a new multilayered flask. J Vis Exp 2011;58: e3418. link1

[53] Archibald PRT, Chandra A, Thomas D, Chose O, Massouridès E, Laâbi Y, et al. Comparability of automated human induced pluripotent stem cell culture: a pilot study. Bioproc Biosyst Eng 2016;39(12):1847–58. link1

[54] Ball O, Robinson S, Bure K, Brindley DA, Mccall D. Bioprocessing automation in cell therapy manufacturing: outcomes of special interest group automation workshop. Cytotherapy 2018;20(4):592–9. link1

[55] Crombie DE, Daniszewski M, Liang HH, Kulkarni T, Li F, Lidgerwood GE, et al. Development of a modular automated system for maintenance and differentiation of adherent human pluripotent stem cells. SLAS Discov 2017;22(8):1016–25. link1

[56] Soares FAC, Chandra A, Thomas RJ, Pedersen RA, Vallier L, Williams DJ. Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions. J Biotechnol 2014;173:53–8. link1

[57] Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, et al. Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 2009;102(6):1636–44. link1

[58] Kikuchi T, Kino-Oka M, Wada M, Kobayashi T, Kato M, Takeda S, et al. A novel, flexible and automated manufacturing facility for cell-based health care products: Tissue Factory. Regen Ther 2018;9:89–99. link1

[59] Kato R, Matsumoto M, Sasaki H, Joto R, Okada M, Ikeda Y, et al. Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control. Sci Rep 2016;6(1):34009. link1

[60] Nagasaka R, Matsumoto M, Okada M, Sasaki H, Kanie K, Kii H, et al. Visualization of morphological categories of colonies for monitoring of effect on induced pluripotent stem cell culture status. Regen Ther 2017;6:41–51. link1

[61] Nagasaka R, Gotou Y, Yoshida K, Kanie K, Shimizu K, Honda H, et al. Imagebased cell quality evaluation to detect irregularities under same culture process of human induced pluripotent stem cells. J Biosci Bioeng 2017;123 (5):642–50. link1

[62] Orita K, Sawada K, Koyama R, Ikegaya Y. Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Sci 2019;140(4):313–6. link1

[63] Zhang H, Shao X, Peng Y, Teng Y, Saravanan KM, Zhang H, et al. A novel machine learning based approach for iPS progenitor cell identification. PLoS Comput Biol 2019;15(12):e1007351. link1

[64] Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 2010;11(5):353–65. link1

[65] Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 2012;13(9):591–600. link1

[66] Okano K, Uematsu G, Hama S, Tanaka T, Noda H, Kondo A, et al. Metabolic engineering of Lactobacillus plantarum for direct L-lactic acid production from raw corn starch. Biotechnol J 2018;13(5):e1700517. link1

[67] Kieran PM, MacLoughlin PF, Malone DM. Plant cell suspension cultures: some engineering considerations. J Biotechnol 1997;59(1–2):39–52. link1

[68] Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 2012;18(10):772–84. link1

[69] Ismadi MZ, Gupta P, Fouras A, Verma P, Jadhav S, Bellare J, et al. Flow characterization of a spinner flask for induced pluripotent stem cell culture application. PLoS ONE 2014;9(10):e106493. link1

[70] Almutawaa W, Rohani L, Rancourt ED. Expansion of human induced pluripotent stem cells in stirred suspension bioreactors. In: Turksen K, editor. Bioreactors in stem cell biology. Methods in molecular biology. New York: Humana Press; 2016. p. 53–61. link1

[71] Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M, et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 2005;92(7):920–33. link1

[72] Sargent CY, Berguig GY, Kinney MA, Hiatt LA, Carpenedo RL, Berson RE, et al. Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture. Biotechnol Bioeng 2010;105(3):611–26. link1

[73] Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med 2015;9(12):1363–75. link1

[74] Vosough M, Omidinia E, Kadivar M, Shokrgozar MA, Pournasr B, Aghdami N, et al. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev 2013;22 (20):2693–705. link1

[75] Van Winkle AP, Gates ID, Kallos MS. Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs 2012;196(1):34–47. link1

[76] Nath SC, Horie M, Nagamori E, Kino-Oka M. Size- and time-dependent growth properties of human induced pluripotent stem cells in the culture of single aggregate. J Biosci Bioeng 2017;124(4):469–75. link1

[77] Kato Y, Kim MH, Kino-Oka M. Comparison of growth kinetics between static and dynamic cultures of human induced pluripotent stem cells. J Biosci Bioeng 2018;125(6):736–40. link1

[78] Kim MH, Takeuchi K, Kino-Oka M. Role of cell-secreted extracellular matrix formation in aggregate formation and stability of human induced pluripotent stem cells in suspension culture. J Biosci Bioeng 2019;127(3):372–80. link1

[79] Ungrin MD, Clarke G, Yin T, Niebrugge S, Nostro MC, Sarangi F, et al. Rational bioprocess design for human pluripotent stem cell expansion and endoderm differentiation based on cellular dynamics. Biotechnol Bioeng 2012;109 (4):853–66. link1

[80] Horiguchi I, Sakai Y. Serum replacement with albumin-associated lipids prevents excess aggregation and enhances growth of induced pluripotent stem cells in suspension culture. Biotechnol Progr 2016;32(4):1009–16. link1

[81] Son MY, Kim HJ, Kim MJ, Cho YS. Physical passaging of embryoid bodies generated from human pluripotent stem cells. PLoS ONE 2011;6(5):e19134. link1

[82] Nath SC, Tokura T, Kim MH, Kino-Oka M. Botulinum hemagglutinin-mediated in situ break-up of human induced pluripotent stem cell aggregates for highdensity suspension culture. Biotechnol Bioeng 2018;115(4):910–20. link1

[83] Nurhayati RW, Ojima Y, Dohda T, Kino-Oka M. Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system. Biotechnol Progr 2018;34(2):362–9. link1

[84] Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells Dev 2018;27(12):787–804. link1

[85] Wang X, Wei G, Yu W, Zhao Y, Yu X, Ma X. Scalable producing embryoid bodies by rotary cell culture system and constructing engineered cardiac tissue with ES-derived cardiomyocytes in vitro. Biotechnol Progr 2006;22 (3):811–8. link1

[86] Jha R, Wu Q, Singh M, Preininger MK, Han P, Ding G, et al. Simulated microgravity and 3D culture enhance induction, viability, proliferation and differentiation of cardiac progenitors from human pluripotent stem cells. Sci Rep 2016;6(1):30956. link1

[87] Yuge L, Kajiume T, Tahara H, Kawahara Y, Umeda C, Yoshimoto R, et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev 2006;15(6):921–9. link1

[88] Leung HW, Chen A, Choo ABH, Reuveny S, Oh SKW. Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C Methods 2011;17(2):165–72. link1

[89] Hang H, Guo Y, Liu J, Bai L, Xia J, Guo M, et al. Computational fluid dynamics modeling of an inverted frustoconical shaking bioreactor for mammalian cell suspension culture. Biotechnol Bioproc E 2011;16(3):567–75. link1

[90] Zhu L, Monteil DT, Wang Y, Song B, Hacker DL, Wurm MJ, et al. Fluid dynamics of flow fields in a disposable 600-mL orbitally shaken bioreactor. Biochem Eng J 2018;129:84–95. link1

[91] Yamamoto T, Yano M, Okano Y, Kino-oka M. Numerical investigation for the movement of cell colonies in bioreactors: stirring and orbital shaking tanks. J Chem Eng Jpn 2018;51(5):423–30. link1

[92] Chen AKL, Chen X, Choo ABH, Reuveny S, Oh SKW. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 2011;7(2):97–111. link1

[93] Park Y, Chen Y, Ordovas L, Verfaillie CM. Hepatic differentiation of human embryonic stem cells on microcarriers. J Biotechnol 2014;174:39–48. link1

[94] Rodrigues AL, Rodrigues CAV, Gomes AR, Vieira SF, Badenes SM, Diogo MM, et al. Dissolvable microcarriers allow scalable expansion and harvesting of human induced pluripotent stem cells under xeno-free conditions. Biotechnol J 2019;14(4):e1800461. link1

[95] Li Y, Jiang X, Li L, Chen ZN, Gao G, Yao R, et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication 2018;10(4):044101. link1

[96] Horiguchi I, Chowdhury MM, Sakai Y, Tabata Y. Proliferation, morphology, and pluripotency of mouse induced pluripotent stem cells in three different types of alginate beads for mass production. Biotechnol Progr 2014;30 (4):896–904. link1

[97] Horiguchi I, Sakai Y. Alginate encapsulation of pluripotent stem cells using a co-axial nozzle. J Vis Exp 2015;101:e52835. link1

[98] Tabata Y, Horiguchi I, Lutolf MP, Sakai Y. Development of bioactive hydrogel capsules for the 3D expansion of pluripotent stem cells in bioreactors. Biomater Sci 2014;2(2):176–83. link1

[99] Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 2004;22 (3):275–82. link1

[100] Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA 2007;104(27):11298–303. link1

[101] Wilson JL, Najia MA, Saeed R, McDevitt TC. Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnol Bioeng 2014;111(3):618–31. link1

[102] Kagihiro M, Fukumori K, Aoki T, Ungkulpasvich U, Mizutani M, ViravaidyaPasuwat K, et al. Kinetic analysis of cell decay during the filling process: application to lot size determination in manufacturing systems for human induced pluripotent andmesenchymal stem cells. Biochem Eng J 2018;131:31–8. link1

[103] Giugliarelli A, Urbanelli L, Ricci M, Paolantoni M, Emiliani C, Saccardi R, et al. Evidence of DMSO-induced protein aggregation in cells. J Phys Chem A 2016;120(27):5065–70. link1

[104] Yuan C, Gao J, Guo J, Bai L, Marshall C, Cai Z, et al. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS ONE 2014;9(9):e107447. link1

[105] Katkov II, Kim MS, Bajpai R, Altman YS, Mercola M, Loring JF, et al. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology 2006;53(2):194–205. link1

[106] Czysz K, Minger S, Thomas N. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation. PLoS ONE 2015;10 (2):e0117689. link1

[107] Nishigaki T, Teramura Y, Nasu A, Takada K, Toguchida J, Iwata H. Highly efficient cryopreservation of human induced pluripotent stem cells using a dimethyl sulfoxide-free solution. Int J Dev Biol 2011;55(3):305–11. link1

[108] Katkov II, Kan NG, Cimadamore F, Nelson B, Snyder EY, Terskikh AV. DMSOfree programmed cryopreservation of fully dissociated and adherent human induced pluripotent stem cells. Stem Cells Int 2011;2011:981606. link1

[109] Matsumura K, Kawamoto K, Takeuchi M, Yoshimura S, Tanaka D, Hyon SH. Cryopreservation of a two-dimensional monolayer using a slow vitrification method with polyampholyte to inhibit ice crystal formation. ACS Biomater Sci Eng 2016;2(6):1023–9. link1

[110] Heng BC, Bested SM, Chan SH, Cao T. A proposed design for the cryopreservation of intact and adherent human embryonic stem cell colonies. In Vitro Cell Dev Biol Anim 2005;41(3–4):77–9. link1

[111] Ha SY, Jee BC, Suh CS, Kim HS, Oh SK, Kim SH, et al. Cryopreservation of human embryonic stem cells without the use of a programmable freezer. Hum Reprod 2005;20(7):1779–85. link1

[112] Li X, Krawetz R, Liu S, Meng G, Rancourt DE. ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 2009;24(3):580–9. link1

[113] Xu X, Cowley S, Flaim CJ, James W, Seymour LW, Cui Z. Enhancement of cell recovery for dissociated human embryonic stem cells after cryopreservation. Biotechnol Progr 2010;26(3):781–8. link1

[114] Li R, Yu G, Azarin SM, Hubel A. Freezing responses in DMSO-based cryopreservation of human iPS cells: aggregates versus single cells. Tissue Eng Part C Methods 2018;24(5):289–99. link1

[115] Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol 1984;247(3 Pt 1):C125–42. link1

[116] Baust JM, Campbell LH, Harbell JW. Best practices for cryopreserving, thawing, recovering, and assessing cells. In Vitro Cell Dev Biol Anim 2017;53(10):855–71. link1

[117] Yang PF, Hua TC, Wu J, Chang ZH, Tsung HC, Cao YL. Cryopreservation of human embryonic stem cells: a protocol by programmed cooling. Cryo Lett 2006;27(6):361–8. link1

[118] Yuan Y, Yang Y, Tian Y, Park J, Dai A, Roberts RM, et al. Efficient long-term cryopreservation of pluripotent stem cells at -80 ℃. Sci Rep 2016;6 (1):34476. link1

[119] Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, et al. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med 2014;20(7):790–3. link1

[120] Huang H, Yarmush ML, Usta OB. Long-term deep-supercooling of largevolume water and red cell suspensions via surface sealing with immiscible liquids. Nat Commun 2018;9(1):3201. link1

[121] Massie I, Selden C, Hodgson H, Fuller B. Storage temperatures for cold-chain delivery in cell therapy: a study of alginate-encapsulated liver cell spheroids stored at -80 ℃ or -170 ℃ for up to 1 year. Tissue Eng Part C Methods 2013;19(3):189–95. link1

[122] Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, et al. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther 2017;8(1):66. link1

[123] Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 2017;545(7653):229–33. link1

[124] Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 2018;560(7718):325–30. link1

[125] Liu Y, Mi Y, Mueller T, Kreibich S, Williams EG, Van Drogen A, et al. Multiomic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol 2019;37(3):314–22. link1

[126] Sekimoto A, Kanemaru Y, Okano Y, Kanie K, Kato R, Kino-oka M. Numerical investigation of particle dispersion in the preprocessing stage for a static cell cultivation. Regen Ther 2019;12:83–7. link1

[127] Tang B, Pan Z, Yin K, Khateeb A. Recent advances of deep learning in bioinformatics and computational biology. Front Genet 2019;10:214. link1

[128] Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 2018;15(141):20170387. link1

Related Research