Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 5 doi: 10.1016/j.eng.2021.02.009

Degradable Plastics Are Vulnerable to Cracks

a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
b State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics & Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China

Received: 2020-08-30 Revised: 2020-11-09 Accepted: 2021-02-08 Available online: 2021-04-27

Next Previous

Abstract

A plastic may degrade in response to a trigger. The kinetics of degradation have long been characterized by the loss of weight and strength over time. These methods of gross characterization, however, are misleading when plastic degrades heterogeneously. Here, we study heterogeneous degradation in an extreme form: the growth of a crack under the combined action of chemistry and mechanics. An applied load opens the crack, exposes the crack front to chemical attack, and causes the crack to outrun gross degradation. We studied the crack growth in polylactic acid (PLA), a polyester in which ester bonds break by hydrolysis. We cut a crack in a PLA film using scissors, tore it using an apparatus, and recorded the crack growth using a camera through a microscope. In our testing range, the crack velocity was insensitive to load but was sensitive to humidity and pH. These findings will aid the development of degradable plastics for healthcare and sustainability.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Siracusa V, Rocculi P, Romani S, Dalla RM. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 2008;19(12):634–43. link1

[ 2 ] Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: a critical review. J Polym Environ 2007;15(2):125–50. link1

[ 3 ] Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 2009;44(21):5713–24. link1

[ 4 ] Chu CC, von Fraunhofer JA, Greisler HP, editors. Wound closure biomaterials and devices. Boca Raton: CRC Press; 1996. link1

[ 5 ] Ren X. Biodegradable plastics: a solution or a challenge? J Clean Prod 2003;11 (1):27–40. link1

[ 6 ] Suzuki J. Study on ozone treatment of water-soluble polymers. I. Ozone degradation of polyethylene glycol in water. J Appl Polym Sci 1976;20 (1):93–103. link1

[ 7 ] Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 1999;48(3):342–53. link1

[ 8 ] Raghavan D. Characterization of biodegradable plastics. Polym Plast Technol Eng 1995;34(1):41–63. link1

[ 9 ] Singh BK, Walker A, Morgan JAW, Wright DJ. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 2003;69(9):5198–206. link1

[10] Bisaria VS, Ghose TK. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microb Technol 1981;3 (2):90–104. link1

[11] Guo M, Chu Z, Yao J, Feng W, Wang Y, Wang L, et al. The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym Degrad Stab 2016;124:95–100. link1

[12] Atlas RM. Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 1975;30(3):396–403. link1

[13] Singh B, Sharma N. Mechanistic implications of plastic degradation. Polym Degrad Stab 2008;93(3):561–84. link1

[14] Okada T, Hayashi T, Ikada Y. Degradation of collagen suture in vitro and in vivo. Biomaterials 1992;13(7):448–54. link1

[15] Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 2010;99(2):551–61. link1

[16] Shi M, Steck J, Yang X, Zhang G, Yin J, Suo Z. Cracks outrun erosion in degradable polymer. Extreme Mech Lett 2020;40:100978. link1

[17] Wiederhorn SM, Bolz LH. Stress corrosion and static fatigue of glass. J Am Ceram Soc 1970;53(10):543–8. link1

[18] Speidel MO. Stress corrosion cracking of aluminum alloys. Metall Trans A Phys Metall Mater Sci 1975;6(4):631–51. link1

[19] Wright DC. Environmental stress cracking of plastics. Shrop Shire: iSmithers Rapra Publishing; 1996. link1

[20] Robeson LM. Environmental stress cracking: a review. Polym Eng Sci 2013;53 (3):453–67. link1

[21] Braden M, Gent AN. The attack of ozone on stretched rubber vulcanizates. I. The rate of cut growth. J Appl Polym Sci 1960;3(7):90–9. link1

[22] Choi BH, Chudnovsky A, Sehanobish K. Stress corrosion cracking in plastic pipes: observation and modeling. Int J Fracture 2007;145(1):81–8. link1

[23] Ge H, Le JL, Mantell SC. Numerical modeling of stress corrosion cracking of polymers. Eng Fract Mech 2016;160:199–212. link1

[24] Masutani K, Kimura Y. PLA synthesis. From the monomer to the polymer. In: Jiménez A, Peltzer M, Ruseckaite R, editors. Poly(lactic acid) science and technology: processing, properties, additives and applications. Cambridge: The Royal Society of Chemistry; 2015. p. 1–36. link1

[25] Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 1971;5(3):169–81. link1

[26] Siparsky GL, Voorhees KJ, Miao F. Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degrad 1998;6(1):31–41. link1

[27] Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 1994;15(15):1209–13. link1

[28] Van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE. Hydrolytic degradation of oligo (lactic acid): a kinetic and mechanistic study. Polymer 2004;45 (20):6779–87. link1

[29] Lazzari S, Codari F, Storti G, Morbidelli M, Moscatelli D. Modeling the pHdependent PLA oligomer degradation kinetics. Polym Degrad Stab 2014;110:80–90. link1

[30] Von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002;23(21):4221–31. link1

[31] Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng 2020;8 (9):3494–511. link1

[32] Pelegrini K, Donazzolo I, Brambilla V, Coulon Grisa AM, Piazza D, Zattera AJ, et al. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J Appl Polym Sci 2016;133 (15):43290. link1

[33] Göpferich A. Polymer bulk erosion. Macromolecules 1997;30(9):2598–604. link1

[34] Ding Y, Xiao Q, Dauskardt RH. Molecular design of confined organic network hybrids with controlled deformation rate sensitivity and moisture resistance. Acta Mater 2018;142:162–71. link1

[35] Albertsson AC, Hakkarainen M. Designed to degrade. Science 2017;358 (6365):872–3. link1

[36] Rahman M. Degradation of polyesters in medical applications. In: Saleh HEDM, editor. Polyester. Rijeka: InTech; 2012. p. 99–132. link1

[37] Mansfield SD, Meder R. Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 2003;10(2):159–69. link1

[38] Warren RA. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 1996;50(1):183–212. link1

[39] Schollenberger CS, Stewart FD. Thermoplastic polyurethane hydrolysis stability. J Elastomers Plast 1971;3(1):28–56. link1

[40] Stokes K, McVenes R, Anderson JM. Polyurethane elastomer biostability. J Biomater Appl 1995;9(4):321–54. link1

[41] Yang X, Yang J, Chen L, Suo Z. Hydrolytic crack in a rubbery network. Extreme Mech Lett 2019;31:100531. link1

[42] Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links. Macromolecules 2011;44(8):2536–41. link1

[43] Shieh P, Zhang W, Husted KEL, Kristufek SL, Xiong B, Lundberg DJ, et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 2020;583(7817):542–7. link1

Related Research