Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 5 doi: 10.1016/j.eng.2021.02.010

Advances in Soft Materials for Sustainable Electronics

a Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
b Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
c KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Received: 2020-10-01 Revised: 2020-12-08 Accepted: 2021-02-08 Available online: 2021-04-18

Next Previous

Abstract

In the current shift from conventional fossil-fuel-based materials to renewable energy, ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties. The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment. This review covers the use of sustainable materials as components in organic electronics, such as substrates, insulators, semiconductors, and conductors. We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

References

[ 1 ] Bettinger CJ, Bao Z. Biomaterials-based organic electronic devices. Polym Int 2010;59(5):563–7. link1

[ 2 ] Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, et al. Epidermal electronics. Science 2011;333(6044):838–43. link1

[ 3 ] Kim YJ, Chun SE, Whitacre J, Bettinger CJ. Self-deployable current sources fabricated from edible materials. J Mater Chem B Mater Biol Med 2013;1 (31):3781–8. link1

[ 4 ] Norton JJS, Lee DS, Lee JW, Lee W, Kwon O, Won P, et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc Natl Acad Sci USA 2015;112(13):3920–5. link1

[ 5 ] Tao H, Hwang SW, Marelli B, An B, Moreau JE, Yang M, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc Natl Acad Sci USA 2014;111(49):17385–9. link1

[ 6 ] Balde K, Wang F, Huisman J, Kuehr R. The global e-waste monitor 2014: quantities, flows and resources. Bonn: United Nations University; 2015. link1

[ 7 ] Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Marine pollution. Plastic waste inputs from land into the ocean. Science 2015;347(6223):768–71. link1

[ 8 ] Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv 2008;26(3):246–65. link1

[ 9 ] Singh B, Sharma N. Mechanistic implications of plastic degradation. Polym Degrad Stabil 2008;93(3):561–84. link1

[10] Kang SK, Murphy RKJ, Hwang SW, Lee SM, Harburg DV, Krueger NA, et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016;530 (7588):71–6. link1

[11] Li J, He Y, Inoue Y. Study on thermal and mechanical properties of biodegradable blends of poly(e-caprolactone) and lignin. Polym J 2001;33 (4):336–43. link1

[12] Hosoda N, Tsujimoto T, Uyama H. Plant oil-based green composite using porous poly(3-hydroxybutyrate). Polym J 2014;46(5):301–6. link1

[13] Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 2011;37(1):52–68. link1

[14] Eichhorn SJ, Gandini A. Materials from renewable resources. MRS Bull 2010;35(3):187–93. link1

[15] Nakai Y, Yoshikawa M. Cellulose as a membrane material for optical resolution. Polym J 2015;47(4):334–9. link1

[16] Sunilkumar M, Gafoor AA, Anas A, Haseena AP, Sujith A. Dielectric properties: a gateway to antibacterial assay—a case study of low-density polyethylene/chitosan composite films. Polym J 2014;46(7):422–9. link1

[17] Huang X, Zhang S, Zhang Y, Zhang H, Yang X. Sulfonated polyimide/chitosan composite membranes for a vanadium redox flow battery: influence of the sulfonation degree of the sulfonated polyimide. Polym J 2016;48(8):905–18. link1

[18] Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci 2006;31(7):603–32. link1

[19] Xu C, Arancon RAD, Labidi J, Luque R. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 2014;43(22):7485–500. link1

[20] Besson M, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts. Chem Rev 2014;114(3):1827–70. link1

[21] Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starke 2010;62(8):389–420. link1

[22] Damager I, Engelsen SB, Blennow A, Møller BL, Motawia MS. First principles insight into the a-glucan structures of starch: their synthesis, conformation, and hydration. Chem Rev 2010;110(4):2049–80. link1

[23] Lligadas G, Ronda JC, Galià M, Cádiz V. Renewable polymeric materials from vegetable oils: a perspective. Mater Today 2013;16(9):337–43. link1

[24] Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009;38(8):2434–46. link1

[25] Irimia-Vladu M. ‘‘Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 2014;43 (2):588–610. link1

[26] Tobjörk D, Österbacka R. Paper electronics. Adv Mater 2011;23(17):1935–61. link1

[27] Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C. Organic electronics on paper. Appl Phys Lett 2004;84(14):2673–5. link1

[28] Bollström R, Määttänen A, Tobjörk D, Ihalainen P, Kaihovirta N, Österbacka R, et al. A multilayer coated fiber-based substrate suitable for printed functionality. Org Electron 2009;10(5):1020–3. link1

[29] Zschieschang U, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, et al. Organic electronics on banknotes. Adv Mater 2011;23(5):654–8. link1

[30] Yun TY, Eom S, Lim S. Based capacitive touchpad using home inkjet printer. J Disp Technol 2016;12(11):1411–6. link1

[31] Shao F, Feng P, Wan C, Wan X, Yang Y, Shi Y, et al. Multifunctional logic demonstrated in a flexible multigate oxide-based electric-double-layer transistor on paper substrate. Adv Electron Mater 2017;3(3):1600509. link1

[32] Ha D, Zhitenev NB, Fang Z. Paper in electronic and optoelectronic devices. Adv Electron Mater 2018;4(5):1700593. link1

[33] Casula G, Lai S, Matino L, Santoro F, Bonfiglio A, Cosseddu P. Printed, lowvoltage, all-organic transistors and complementary circuits on paper substrate. Adv Electron Mater 2020;6(5):1901027. link1

[34] Martins R, Nathan A, Barros R, Pereira L, Barquinha P, Correia N, et al. Complementary metal oxide semiconductor technology with and on paper. Adv Mater 2011;23(39):4491–6. link1

[35] Kim DY, Steckl AJ. Electrowetting on paper for electronic paper display. ACS Appl Mater Interfaces 2010;2(11):3318–23. link1

[36] Siegel AC, Phillips ST, Wiley BJ, Whitesides GM. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 2009;9(19):2775–81. link1

[37] Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, et al. Printed paper photovoltaic cells. Adv Energy Mater 2011;1(6):1018–22. link1

[38] Barr MC, Rowehl JA, Lunt RR, Xu J, Wang A, Boyce CM, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater 2011;23(31):3499–505. link1

[39] Marsh RE, Corey RB, Pauling L. An investigation of the structure of silk fibroin. Biochim Biophys Acta 1955;16(1):1–34. link1

[40] Hota MK, Bera MK, Kundu B, Kundu SC, Maiti CK. A natural silk fibroin protein-based transparent bio-memristor. Adv Funct Mater 2012;22 (21):4493–9. link1

[41] Wang CH, Hsieh CY, Hwang JC. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv Mater 2011;23(14):1630–4. link1

[42] Capelli R, Amsden JJ, Generali G, Toffanin S, Benfenati V, Muccini M, et al. Integration of silk protein in organic and light-emitting transistors. Org Electron 2011;12(7):1146–51. link1

[43] Chang TH, Liao CP, Tsai JC, Lee CY, Hwang JC, Tso IM, et al. Natural polyelectrolyte: major ampullate spider silk for electrolyte organic fieldeffect transistors. Org Electron 2014;15(4):954–60. link1

[44] Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 2010;9(6):511–7. link1

[45] Hwang SW, Tao H, Kim DH, Cheng H, Song JK, Rill E, et al. A physically transient form of silicon electronics. Science 2012;337(6102):1640–4. link1

[46] Diddens I, Murphy B, Krisch M, Müller M. Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 2008;41 (24):9755–9. link1

[47] Matsuo M, Sawatari C, Iwai Y, Ozaki F. Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 1990;23(13):3266–75. link1

[48] Sakurada I, Ito T, Nakamae K. Elastic moduli of polymer crystals for the chain axial direction. Makromol Chem 1964;75(1):1–10. link1

[49] Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 2005;44(22):3358–93. link1

[50] Oldenbourg R, Wen X, Meyer RB, Caspar DLD. Orientational distribution function in nematic tobacco-mosaic-virus liquid crystals measured by X-ray diffraction. Phys Rev Lett 1988;61(16):1851–4. link1

[51] Buining PA, Lekkerkerker HNW. Isotropic-nematic phase separation of a dispersion of organophilic boehmite rods. J Phys Chem 1993;97(44):11510–6. link1

[52] Risteen BE, Blake A, McBride MA, Rosu C, Park JO, Srinivasarao M, et al. Enhanced alignment of water-soluble polythiophene using cellulose nanocrystals as a liquid crystal template. Biomacromolecules 2017;18 (5):1556–62. link1

[53] Liu Q, Campbell MG, Evans JS, Smalyukh II. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals. Adv Mater 2014;26(42):7178–84. link1

[54] Petritz A, Wolfberger A, Fian A, Griesser T, Irimia-Vladu M, Stadlober B. Cellulose-derivative-based gate dielectric for high-performance organic complementary inverters. Adv Mater 2015;27(46):7645–56. link1

[55] Thiemann S, Sachnov SJ, Pettersson F, Bollström R, Österbacka R, Wasserscheid P, et al. Cellulose-based ionogels for paper electronics. Adv Funct Mater 2014;24(5):625–34. link1

[56] Chiu YC, Sun HS, Lee WY, Halila S, Borsali R, Chen WC. Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv Mater 2015;27(40):6257–64. link1

[57] Chiu YC, Otsuka I, Halila S, Borsali R, Chen WC. High-performance nonvolatile transistor memories of pentacence using the green electrets of sugar-based block copolymers and their supramolecules. Adv Funct Mater 2014;24 (27):4240–9. link1

[58] Hagenmaier RD, Shaw PE. Permeability of shellac coatings to gases and water vapor. J Agric Food Chem 1991;39(5):825–9. link1

[59] Goswami DN. Dielectric behavior of the constituents of the natural resin shellac. J Appl Polym Sci 1979;24(9):1977–84. link1

[60] Irimia-Vladu M, Głowacki ED, Schwabegger G, Leonat L, Akpinar HZ, Sitter H, et al. Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem 2013;15(6):1473–6. link1

[61] Mao LK, Hwang JC, Tsai JC. Operation voltage reduction and gain enhancement in organic CMOS inverters with the TTC/gelatin bilayer dielectric. Org Electron 2015;16:221–6. link1

[62] Acar H, Çınar S, Thunga M, Kessler MR, Hashemi N, Montazami R. Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv Funct Mater 2014;24(26):4135–43. link1

[63] Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK. Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 2003;14:687–91. link1

[64] Chang JW, Wang CG, Huang CY, Tsai TD, Guo TF, Wen TC. Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 2011;23(35):4077–81. link1

[65] Lu Y, Fujii M. Dielectric analysis of hen egg white with denaturation and in cool storage. Int J Food Sci Technol 1998;33(4):393–9. link1

[66] Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008;53(4):163–6. link1

[67] Khor LQ, Cheong KY. Aloe vera gel as natural organic dielectric in electronic application. J Mater Sci Mater Electron 2013;24(7):2646–52. link1

[68] Lim ZX, Sreenivasan S, Wong YH, Zhao F, Cheong KY. Filamentary conduction in Aloe vera film for memory application. Procedia Eng 2017;184:655–62. link1

[69] Khor LQ, Cheong KY. N-type organic field-effect transistor based on fullerene with natural Aloe vera/SiO2 nanoparticles as gate dielectric. ECS J Solid State Sci Technol 2013;2(11):440–4. link1

[70] Alberts B. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008. link1

[71] Hinze D, Hatnik U, Sturm M. An object oriented simulation of real occurring biological processes for DNA computing and its experimental verification. In: Jonoska N, Seeman NC, editors. DNA computing. New York: Springer; 2002. p. 1–13. link1

[72] Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. Science 2012;337(6102):1628. link1

[73] Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L. Solution of a 20-variable 3-SAT problem on a DNA computer. Science 2002;296 (5567):499–502. link1

[74] Reif JH. Successes and challenges. Science 2002;296(5567):478–9. link1

[75] Jones MR, Seeman NC, Mirkin CA. Programmable materials and the nature of the DNA bond. Science 2015;347(6224):1260901.

[76] Park SM, Park G, Cha YJ, Yoon DK. Generation of 2D DNA microstructures via topographic control and shearing. Small 2020;16(34):e2002449. link1

[77] Cha YJ, Park SM, You R, Kim H, Yoon DK. Microstructure arrays of DNA using topographic control. Nat Commun 2019;10(1):2512. link1

[78] Cha YJ, Gim MJ, Oh K, Yoon DK. Twisted-nematic-mode liquid crystal display with a DNA alignment layer. J Inf Disp 2015;16(3):129–35. link1

[79] Gomez EF, Venkatraman V, Grote JG, Steckl AJ. Exploring the potential of nucleic acid bases in organic light emitting diodes. Adv Mater 2015;27 (46):7552–62. link1

[80] Steckl AJ. DNA—a new material for photonics? Nat Photonics 2007;1(1):3–5. link1

[81] Hagen JA, Li W, Steckl AJ, Grote JG. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 2006;88(17):171109. link1

[82] Lee W, Chen Q, Fan X, Yoon DK. Digital DNA detection based on a compact optofluidic laser with ultra-low sample consumption. Lab Chip 2016;16 (24):4770–6. link1

[83] Steckl AJ, Spaeth H, You H, Gomez E, Grote J. DNA as an optical material. Opt Photonics News 2011;22(7):34–9. link1

[84] Gomez EF, Venkatraman V, Grote JG, Steckl AJ. DNA bases thymine and adenine in bio-organic light emitting diodes. Sci Rep 2014;4(1):7105. link1

[85] Malliaras G, Abidian MR. Organic bioelectronic materials and devices. Adv Mater 2015;27(46):7492. link1

[86] Faber C, Attaccalite C, Olevano V, Runge E, Blase X. First-principles GW calculations for DNA and RNA nucleobases. Phys Rev B Condens Matter Mater Phys 2011;83(11):115123. link1

[87] Lee J, Park JH, Lee YT, Jeon PJ, Lee HS, Nam SH, et al. DNA-base guanine as hydrogen getter and charge-trapping layer embedded in oxide dielectrics for inorganic and organic field-effect transistors. ACS Appl Mater Interfaces 2014;6(7):4965–73. link1

[88] Bravaya KB, Kostko O, Dolgikh S, Landau A, Ahmed M, Krylov AI. Electronic structure and spectroscopy of nucleic acid bases: ionization energies, ionization-induced structural changes, and photoelectron spectra. J Phys Chem A 2010;114(46):12305–17. link1

[89] Pong W, Inouye CS. Vacuum ultraviolet photoemission studies of nucleic acid bases. J Appl Phys 1976;47(8):3444–6. link1

[90] Urano S, Yang X, LeBreton PR. UV photoelectron and quantum mechanical characterization of DNA and RNA bases: valence electronic structures of adenine, 1,9-dimethyl-guanine, l-methylcytosine, thymine and uracil. J Mol Struct 1989;214:315–28. link1

[91] Magulick J, Beerbom MM, Schlaf R. Comparison of ribonucleic acid homopolymer ionization energies and charge injection barriers. J Phys Chem B 2006;110(32):15973–81. link1

[92] Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle ME, Jortner J. Long-range charge hopping in DNA. Proc Natl Acad Sci USA 1999;96 (21):11713–6. link1

[93] Henderson PT, Jones D, Hampikian G, Kan Y, Schuster GB. Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. Proc Natl Acad Sci USA 1999;96(15):8353–8. link1

[94] Kawai K, Kodera H, Osakada Y, Majima T. Sequence-independent and rapid long-range charge transfer through DNA. Nat Chem 2009;1(2):156–9. link1

[95] Meggers E, Michel-Beyerle ME, Giese B. Sequence dependent long range hole transport in DNA. J Am Chem Soc 1998;120(49):12950–5. link1

[96] Xiang L, Palma JL, Bruot C, Mujica V, Ratner MA, Tao N. Intermediate tunnelling-hopping regime in DNA charge transport. Nat Chem 2015;7 (3):221–6. link1

[97] Porath D, Bezryadin A, de Vries S, Dekker C. Direct measurement of electrical transport through DNA molecules. Nature 2000;403(6770):635–8. link1

[98] Lee HY, Tanaka H, Otsuka Y, Yoo KH, Lee JO, Kawai T. Control of electrical conduction in DNA using oxygen hole doping. Appl Phys Lett 2002;80 (9):1670–2. link1

[99] Saito I, Nakamura T, Nakatani K, Yoshioka Y, Yamaguchi K, Sugiyama H. Mapping of the hot spots for DNA damage by one-electron oxidation: efficacy of GG doublets and GGG triplets as a trap in long-range hole migration. J Am Chem Soc 1998;120(48):12686–7. link1

[100] Ben-Jacob E, Hermon Z, Caspi S. DNA transistor and quantum bit element: realization of nano-biomolecular logical devices. Phys Lett A 1999;263 (3):199–202. link1

[101] Zhang Y, Zalar P, Kim C, Collins S, Bazan GC, Nguyen TQ. DNA interlayers enhance charge injection in organic field-effect transistors. Adv Mater 2012;24(31):4255–60. link1

[102] Shi W, Yu J, Huang W, Zheng Y. Performance improvement of a pentacene organic field-effect transistor through a DNA interlayer. J Phys D Appl Phys 2014;47(20):205402. link1

[103] Watson JD, Crick FHC. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953;171(4356):737–8. link1

[104] Lydon JE. The DNA double helix—the untold story. Liq Cryst Today 2003;12 (2):1–9. link1

[105] Robinson C. Liquid-crystalline structures in polypeptide solutions. Tetrahedron 1961;13(1–3):219–34. link1

[106] Livolant F, Levelut AM, Doucet J, Benoit JP. The highly concentrated liquidcrystalline phase of DNA is columnar hexagonal. Nature 1989;339 (6227):724–6. link1

[107] Rill RL, Strzelecka TE, Davidson MW, van Winkle DH. Ordered phases in concentrated DNA solutions. Phys A 1991;176(1):87–116. link1

[108] Merchant K, Rill RL. DNA length and concentration dependencies of anisotropic phase transitions of DNA solutions. Biophys J 1997;73 (6):3154–63. link1

[109] Allmann BP, Shearer PM. A high-frequency secondary event during the 2004 Parkfield earthquake. Science 2007;318(5854):1279–83. link1

[110] Brandes R, Kearns DR. Magnetic ordering of DNA liquid crystals. Biochemistry 1986;25(20):5890–5. link1

[111] Alam TM, Drobny G. Magnetic ordering in synthetic oligonucleotides. A deuterium nuclear magnetic resonance investigation. J Chem Phys 1990;92 (11):6840–6. link1

[112] Hagerman PJ. Flexibility of DNA. Ann Rev Biophys Biophys Chem 1988;17:265–86. link1

[113] Cha YJ, Yoon DK. Control of periodic zigzag structures of DNA by a simple shearing method. Adv Mater 2017;29(3):1604247. link1

[114] Cha YJ, Kim DS, Yoon DK. Highly aligned plasmonic gold nanorods in a DNA matrix. Adv Funct Mater 2017;27(45):1703790. link1

[115] Kesama MR, Dugasani SR, Cha YJ, Son J, Gnapareddy B, Yoo S, et al. Optoelectrical and mechanical properties of multiwall carbon nanotubeintegrated DNA thin films. Nanotechnology 2019;30(24):245704. link1

[116] Han MJ, McBride M, Risteen B, Zhang G, Khau BV, Reichmanis E, et al. Highly oriented and ordered water-soluble semiconducting polymers in a DNA matrix. Chem Mater 2020;32(2):688–96. link1

[117] Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossmann SH, Turro NJ, et al. Long-range photoinduced electron transfer through a DNA helix. Science 1993;262(5136):1025–9. link1

[118] Wang L, Yoshida J, Ogata N, Sasaki S, Kajiyama T. Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)– cationic surfactant complexes: large-scale preparation and optical and thermal properties. Chem Mater 2001;13(4):1273–81. link1

[119] Catherall T, Huskisson D, McAdams S, Vijayaraghavan A. Self-assembly of one dimensional DNA-templated structure. J Mater Chem C Mater Opt Electron Devices 2014;2(34):6895–920. link1

[120] Heckman EM, Hagen JA, Yaney PP, Grote JG, Hopkins FK. Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications. Appl Phys Lett 2005;87(21):211115. link1

[121] Hirata K, Oyamada T, Imai T, Sasabe H, Adachi C, Koyama T. Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammonium lipid complex layer. Appl Phys Lett 2004;85(9):1627–9. link1

[122] Stadler P, Oppelt K, Singh TB, Grote JG, Schwödiauer R, Bauer S, et al. Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric. Org Electron 2007;8(6):648–54. link1

[123] Kwon YW, Lee CH, Choi DH, Jin JI. Materials science of DNA. J Mater Chem 2009;19(10):1353–80. link1

[124] Ouchen F, Venkat N, Joyce DM, Singh KM, Smith SR, Yaney PP, et al. Deoxyribonucleic acid-ceramic hybrid dielectrics for potential application as gate insulators in organic field effect transistors. Appl Phys Lett 2013;103 (11):113701. link1

[125] Kim YS, Jung KH, Lee UR, Kim KH, Hoang MH, Jin JI, et al. High-mobility bioorganic field effect transistors with photoreactive DNAs as gate insulators. Appl Phys Lett 2010;96(10):103307. link1

[126] Yumusak C, Singh TB, Sariciftci NS, Grote JG. Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric. Appl Phys Lett 2009;95(26):263304. link1

[127] Tang CW, Albrecht AC. Photovoltaic effects of metal–chlorophyll-a–metal sandwich cells. J Chem Phys 1975;62(6):2139–49. link1

[128] Wang XF, Wang L, Wang Z, Wang Y, Tamai N, Hong Z, et al. Natural photosynthetic carotenoids for solution-processed organic bulkheterojunction solar cells. J Phys Chem C 2013;117(2):804–11. link1

[129] Ferreira ESB, Hulme AN, McNab H, Quye A. The natural constituents of historical textile dyes. Chem Soc Rev 2004;33(6):329–36. link1

[130] Głowacki ED, Irimia-Vladu M, Bauer S, Sariciftci NS. Hydrogen-bonds in molecular solids—from biological systems to organic electronics. J Mater Chem B Mater Biol Med 2013;1(31):3742–53. link1

[131] Aakeroy CB, Seddon KR. The hydrogen bond and crystal engineering. Chem Soc Rev 1993;22(6):397–407. link1

[132] Desiraju GR. Reflections on the hydrogen bond in crystal engineering. Cryst Growth Des 2011;11(4):896–8. link1

[133] Głowacki ED, Voss G, Sariciftci NS. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics. Adv Mater 2013;25(47):6783–800. link1

[134] Irimia-Vladu M, Głowacki ED, Troshin PA, Schwabegger G, Leonat L, Susarova DK, et al. Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 2012;24 (3):375–80. link1

[135] Głowacki ED, Leonat L, Voss G, Bodea MA, Bozkurt Z, Ramil AM, et al. Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple. AIP Adv 2011;1(4):042132. link1

[136] Ðerek V, Głowacki ED, Sytnyk M, Heiss W, Marciuš M, Ristic´ M, et al. Enhanced near-infrared response of nano- and microstructured silicon/ organic hybrid photodetectors. Appl Phys Lett 2015;107(8):083302. link1

[137] Kanbur Y, Irimia-Vladu M, Głowacki ED, Voss G, Baumgartner M, Schwabegger G, et al. Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors. Org Electron 2012;13 (5):919–24. link1

[138] Scherwitzl B, Resel R, Winkler A. Film growth, adsorption and desorption kinetics of indigo on SiO2. J Chem Phys 2014;140(18):184705. link1

[139] Truger M, Roscioni OM, Röthel C, Kriegner D, Simbrunner C, Ahmed R, et al. Surface-induced phase of Tyrian Purple (6,60 -dibromoindigo): thin film formation and stability. Cryst Growth Des 2016;16(7):3647–55. link1

[140] Klimovich IV, Leshanskaya LI, Troyanov SI, Anokhin DV, Novikov DV, Piryazev AA, et al. Design of indigo derivatives as environment-friendly organic semiconductors for sustainable organic electronics. J Mater Chem C Mater Opt Electron Devices 2014;2(36):7621–31. link1

[141] Pitayatanakul O, Higashino T, Kadoya T, Tanaka M, Kojima H, Ashizawa M, et al. High performance ambipolar organic field-effect transistors based on indigo derivatives. J Mater Chem C Mater Opt Electron Devices 2014;2 (43):9311–7. link1

[142] Klebe G, Graser E, Hädicke E, Berndt J. Crystallochromy as a solid-state effect: correlation of molecular conformation, crystal packing and colour in perylene-3,4:9,10-bis(dicarboximide) pigments. Acta Crystallogr Sect B 1989;B45(1):69–77. link1

[143] Hunger K. Toxicology and toxicological testing of colorants. Rev Prog Color Relat Top 2005;35(1):76–89. link1

[144] Głowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gsiorowski J, White MS, Monkowius U, et al. Hydrogen-bonded semiconducting pigments for airstable field-effect transistors. Adv Mater 2013;25(11):1563–9. link1

[145] Haucke G, Graness G. Thermal isomerization of indigo. Angew Chem Int Ed Engl 1995;34(1):67–8. link1

[146] Głowacki ED, Romanazzi G, Yumusak C, Coskun H, Monkowius U, Voss G, et al. Epindolidiones-versatile and stable hydrogen-bonded pigments for organic field-effect transistors and light-emitting diodes. Adv Funct Mater 2015;25(5):776–87. link1

[147] Rossi L, Bongiovanni G, Kalinowski J, Lanzani G, Mura A, Nisoli M, et al. Ultrafast optical probes of electronic excited states in linear transquinacridone. Chem Phys Lett 1996;257(5–6):545–51. link1

[148] Labana SS, Labana LL. Quinacridones. Chem Rev 1967;67(1):1–18. link1

[149] McGinness J, Corry P, Proctor P. Amorphous semiconductor switching in melanins. Science 1974;183(4127):853–5. link1

[150] Bothma JP, de Boor J, Divakar U, Schwenn PE, Meredith P. Device-quality electrically conducting melanin thin films. Adv Mater 2008;20(18):3539–42. link1

[151] Ambrico M, Ambrico PF, Cardone A, Ligonzo T, Cicco SR, Di Mundo R, et al. Melanin layer on silicon: an attractive structure for a possible exploitation in biopolymer based metal-insulator-silicon devices. Adv Mater 2011;23(29):3332–6. link1

[152] Bettinger CJ, Bruggeman JP, Misra A, Borenstein JT, Langer R. Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 2009;30(17):3050–7. link1

[153] Ambrico M, Cardone A, Ligonzo T, Augelli V, Ambrico PF, Cicco S, et al. Hysteresis-type current-voltage characteristics in Au/eumelanin/ITO/glass structure: towards melanin based memory devices. Org Electron 2010;11 (11):1809–14. link1

[154] Lin YJ. Hysteresis-type current-voltage characteristics of indium tin oxide/ poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate)/ indium tin oxide devices. J Appl Phys 2008;103(6):063702. link1

[155] Zhong C, Deng Y, Roudsari AF, Kapetanovic A, Anantram MP, Rolandi M. A polysaccharide bioprotonic field-effect transistor. Nat Commun 2011;2 (1):476. link1

[156] Angione MD, Pilolli R, Cotrone S, Magliulo M, Mallardi A, Palazzo G, et al. Carbon based materials for electronic bio-sensing. Mater Today 2011;14 (9):424–33. link1

[157] Muskovich M, Bettinger CJ. Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 2012;1(3):248–66. link1

[158] Serrano MC, Chung EJ, Ameer GA. Advances and applications of biodegradable elastomers in regenerative medicine. Adv Funct Mater 2010;20(2):192–208. link1

[159] Sekitani T, Someya T. Human-friendly organic integrated circuits. Mater Today 2011;14(9):398–407. link1

[160] Irimia-Vladu M, Sariciftci NS, Bauer S. Exotic materials for bio-organic electronics. J Mater Chem 2011;21(5):1350–61. link1

[161] Khodagholy D, Doublet T, Gurfinkel M, Quilichini P, Ismailova E, Leleux P, et al. Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 2011;23(36):H268–72. link1

[162] Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR. Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly(3,4-ethylenedioxythiophene) nanotubes. Adv Mater 2009;21(37):3764–70. link1

[163] Richardson-Burns SM, Hendricks JL, Martin DC. Electrochemical polymerization of conducting polymers in living neural tissue. J Neural Eng 2007;4(2):L6–13. link1

[164] Luo SC, Mohamed Ali E, Tansil NC, Yu HH, Gao S, Kantchev EAB, et al. Poly (3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 2008;24(15):8071–7. link1

[165] Isaksson J, Kjäll P, Nilsson D, Robinson ND, Berggren M, Richter-Dahlfors A. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat Mater 2007;6(9):673–9. link1

[166] Bolin MH, Svennersten K, Wang X, Chronakis IS, Richter-Dahlfors A, Jager EWH, et al. Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sens Actuators B Chem 2009;142(2):451–6. link1

[167] Tybrandt K, Larsson KC, Kurup S, Simon DT, Kjäll P, Isaksson J, et al. Translating electronic currents to precise acetylcholine-induced neuronal signaling using an organic electrophoretic delivery device. Adv Mater 2009;21(44):4442–6. link1

[168] Tybrandt K, Larsson KC, Richter-Dahlfors A, Berggren M. Ion bipolar junction transistors. Proc Natl Acad Sci USA 2010;107(22):9929–32. link1

[169] Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, et al. A sensitivity-enhanced field-effect chiral sensor. Nat Mater 2008;7(5):412–7. link1

[170] George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R, et al. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005;26(17):3511–9. link1

Related Research