Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 3 doi: 10.1016/j.eng.2021.03.002

Process Intensification in Pneumatically Agitated Slurry Reactors

a Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

c Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

Received: 2019-01-28 Revised: 2019-08-24 Accepted: 2019-12-17 Available online: 2021-03-11

Next Previous

Abstract

Pneumatically agitated slurry reactors, including bubble column reactors and airlift loop reactors (ALRs), are important gas–liquid–solid multiphase reactors. These reactors have been widely applied in many processes, especially in the biological fermentation and energy chemical industry, due to their low shear stress, good mixing, perfect mass-/heat-transfer properties, and relatively low costs. To further improve the performance of slurry reactors (i.e., mixing and mass/heat transfer) and to satisfy industrial requirements (e.g., temperature control, reduction of back-mixing, and product separation), the process intensification of slurry reactors is essential. This article starts by reviewing the latest advancements in the intensification of mixing and mass/heat transfer in these two types of reactors. It then summarizes process-intensification methods for mixing and separation that allow continuous production in these slurry reactors. Process-intensification technology that integrates directional flow in an ALR with simple solid–liquid separation in a hydrocyclone is recommended for its high efficiency and low costs. This article also systematically addresses vital considerations and challenges, including flow regime discrimination, gas spargers, solid particle effects, and other concerns in slurry reactors. It introduces the progress of numerical simulation using computational fluid dynamics (CFD) for the rational design of slurry reactors and discusses difficulties in modeling. Finally, it presents conclusions and perspectives on the design of industrial slurry reactors.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Al-Qodah Z, Lafi W. Modeling of antibiotics production in magneto threephase airlift fermenter. Biochem Eng J 2001;7(1):7–16. link1

[ 2 ] Van Benthum WAJ, Van der Lans RGJM, Van Loosdrecht MCM, Heijnen JJ. The biofilm airlift suspension extension reactor—II: three-phase hydrodynamics. Chem Eng Sci 2000;55(3):699–711. link1

[ 3 ] Huang Q, Liu T, Yang J, Yao L, Gao L. Evaluation of radiative transfer using the finite volume method in cylindrical photoreactors. Chem Eng Sci 2011;66 (17):3930–40. link1

[ 4 ] Huang Q, Yao L, Liu T, Yang J. Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum. Chem Eng Sci 2012;84:718–26. link1

[ 5 ] Huang Q, Zhang W, Yang C. Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction. Chem Eng Sci 2015;135:441–51. link1

[ 6 ] Jin B, Yin P, Lant P. Hydrodynamics and mass transfer coefficient in threephase airlift reactors containing activated sludge. Chem Eng Process 2006;45 (7):608–17. link1

[ 7 ] Guo X, Yao L, Huang Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour Technol 2015;190:189–95. link1

[ 8 ] Yang C, Mao ZS. Numerical simulation of multiphase reactors with continuous liquid phase. London: Elsevier Academic Press; 2014. link1

[ 9 ] Huang Q, Jiang F, Wang L, Yang C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 2017;3(3):318–29. link1

[10] Russell AB, Thomas CR, Lilly MD. The influence of vessel height and topsection size on the hydrodynamic characteristics of airlift fermentors. Biotechnol Bioeng 1994;43(1):69–76. link1

[11] Choi KH, Lee WK. Circulation liquid velocity, gas holdup and volumetric oxygen transfer coefficient in external-loop airlift reactors. J Chem Technol Biotechnol 1993;56(1):51–8. link1

[12] Vial C, Lainé R, Poncin S, Midoux N, Wild G. Influence of gas distribution and regime transitions on liquid velocity and turbulence in a 3-D bubble column. Chem Eng Sci 2001;56(3):1085–93. link1

[13] Huang Q, Yang C, Yu G, Mao ZS. 3-D simulations of an internal airlift loop reactor using a steady two-fluid model. Chem Eng Technol 2007;30(7):870–9. link1

[14] Dhaouadi H, Poncin S, Hornut JM, Wild G. Solid effects on hydrodynamics and heat transfer in an external loop airlift reactor. Chem Eng Sci 2006;61 (4):1300–11. link1

[15] Heijnen JJ, Hols J, Van der Lans RGJM, Van Leeuwen HLJM, Mulder A, Weltevrede R. A simple hydrodynamic model for the liquid circulation velocity in a full-scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem Eng Sci 1997;52(15):2527–40. link1

[16] Kundakovic L, Vunjak-Novakovic G. A fluid dynamic-model of the draft tube gas–liquid–solid fluidized bed. Chem Eng Sci 1995;50(23):3763–75. link1

[17] Lukic´ NL, Sijacki IM, Kojic PS, Popovic SS, Tekic MN, Petrovic DL. Enhanced mass transfer in a novel external-loop airlift reactor with self-agitated impellers. Biochem Eng J 2017;118:53–63. link1

[18] Li D, Guo K, Li J, Huang Y, Zhou J, Liu H, et al. Hydrodynamics and bubble behaviour in a three-phase two-stage internal loop airlift reactor. Chin J Chem Eng 2018;26(6):1359–69. link1

[19] Chen J, Li F, Degaleesan S, Gupta P, Al-Dahhan MH, Dudukovic HMP, et al. Fluid dynamic parameters in bubble columns with internals. Chem Eng Sci 1999;54(13–14):2187–97. link1

[20] Dreher AJ, Krishna R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates. Catal Today 2001;69(1–4):165–70. link1

[21] Pangarkar K, Schildhauer TJ, Van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Experimental and numerical comparison of structured packings with a randomly packed bed reactor for Fischer–Tropsch synthesis. Catal Today 2009;147(Suppl):S2–9. link1

[22] Guettel R, Kunz U, Turek T. Reactors for Fischer–Tropsch synthesis. Chem Eng Technol 2008;31(5):746–54. link1

[23] Jager B, Espinoza R. Advances in low-temperature Fischer–Tropsch synthesis. Catal Today 1995;23(1):17–28. link1

[24] Savchenko VI, Dorokhov VG, Makaryan IA, Sedov IV, Arutyunov VS. Slurry reactor system with inertial separation for Fischer–Tropsch synthesis and other three-phase hydrogenation processes. Can J Chem Eng 2016;94 (3):518–23. link1

[25] Yang T, Geng S, Yang C, Huang Q. Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification. Chem Eng Sci 2018;184:126–33. link1

[26] Wang T, Wang J, Jin Y. Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res 2007;46(18):5824–47. link1

[27] Cozma P, Gavrilescu M. Airlift reactors: hydrodynamics, mass transfer and applications in environmental remediation. Environ Eng Manag J 2010;9 (5):681–702. link1

[28] Cozma P, Gavrilescu M. Airlift reactors: applications in wastewater treatment. Environ Eng Manag J 2012;11(8):1505–15. link1

[29] Yang GQ, Fan LS. Axial liquid mixing in high-pressure bubble columns. AIChE J 2003;49(8):1995–2008. link1

[30] Yadav A, Kushwaha A, Roy S. An algorithm for estimating radial gas holdup profiles in bubble columns from chordal densitometry measurements. Can J Chem Eng 2016;94(3):524–9. link1

[31] Shah YT, Kelkar BG, Godbole SP, Deckwer WD. Design parameters estimations for bubble column reactors. AIChE J 1982;28(3):353–79. link1

[32] Wu Y, Gidaspow D. Hydrodynamic simulation of methanol synthesis in gas– liquid slurry bubble column reactors. Chem Eng Sci 2000;55(3):573–87. link1

[33] Gupta P, Al-Dahhan MH, Dudukovic MP, Toseland BA. Comparison of singleand two-bubble class gas–liquid recirculation models—application to pilotplant radioactive tracer studies during methanol synthesis. Chem Eng Sci 2001;56(3):1117–25. link1

[34] Youssef AA, Al-Dahhan MH. Impact of internals on the gas holdup and bubble properties of a bubble column. Ind Eng Chem Res 2009;48(17):8007–13. link1

[35] Kagumba M, Al-Dahhan MH. Impact of internals size and configuration on bubble dynamics in bubble columns for alternative clean fuels production. Ind Eng Chem Res 2015;54(4):1359–72. link1

[36] Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Liquid dispersion in large diameter bubble columns, with and without internals. Can J Chem Eng 2003;81(3–4):360–6. link1

[37] Pradhan AK, Parichha RK, De P. Gas hold-up in non-Newtonian solutions in a bubble column with internals. Can J Chem Eng 1993;71(3):468–71. link1

[38] Saxena SC, Rao NS, Thimmapuram PR. Gas phase holdup in slurry bubble columns for two- and three-phase systems. Chem Eng J 1992;49(3):151–9. link1

[39] Fair JR, Lambright AJ, Andersen JW. Heat transfer and gas holdup in a sparged contactor. Ind Eng Chem Process Des Dev 1962;1(1):33–6. link1

[40] Palaskar SN, De JK, Pandit AB. Liquid phase RTD studies in sectionalized bubble column. Chem Eng Technol 2000;23(1):61–9. link1

[41] Rabha S, Schubert M, Grugel F, Banowski M, Hampel U. Visualization and quantitative analysis of dispersive mixing by a helical static mixer in upward co-current gas–liquid flow. Chem Eng J 2015;262:527–40. link1

[42] Gaspillo PAD, Goto S. Mass transfer in bubble slurry column with static mixer in draft tube. J Chem Eng of Jpn 1991;24(5):680–2. link1

[43] Urseanu MI, Ellenberger J, Krishna R. A structured catalytic bubble column reactor: hydrodynamics and mixing studies. Catal Today 2001;69(1– 4):105–13. link1

[44] Khamadieva R, Böhm U. Mass transfer to the wall of a packed and unpacked bubble column operating with Newtonian and non-Newtonian liquids. Chem Eng J 2006;116(2):105–13. link1

[45] Sultan AJ, Sabri LS, Al-Dahhan MH. Influence of the size of heat exchanging internals on the gas holdup distribution in a bubble column using gamma-ray computed tomography. Chem Eng Sci 2018;186:1–25. link1

[46] Al Mesfer MK, Sultan AJ, Al-Dahhan MH. Impacts of dense heat exchanging internals on gas holdup cross-sectional distributions and profiles of bubble column using gamma ray computed tomography (CT) for FT synthesis. Chem Eng J 2016;300:317–33. link1

[47] Chen BH, Yang NS, Mcmillan AF. Gas holdup and pressure drop for air–water flow through plate bubble columns. Can J Chem Eng 1986;64(3):387–92. link1

[48] Magnussen P, Schumacher V, Rotermund GW, Hafner F. Residence time behavior of liquid-phase in bubble columns of larger diameter. Chem Ing Tech 1978;50(10):811. link1

[49] Krishna R, Urseanu MI, Van Baten JM, Ellenberger J. Liquid phase dispersion in bubble columns operating in the churn-turbulent flow regime. Chem Eng J 2000;78(1):43–51. link1

[50] Krishna R, Urseanu MI, Van Baten JM, Ellenberger J. Rise velocity of a swarm of large gas bubbles in liquids. Chem Eng Sci 1999;54(2):171–83. link1

[51] Chen B. Effects of liquid flow on axial mixing liquid in a bubble column. Can J Chem Eng 1972;50(3):436–8. link1

[52] Deckwer W, Graeser U, Langemann H, Serpemen Y. Zones of different mixing in the liquid phase of bubble columns. Chem Eng Sci 1973;28(5):1223–5. link1

[53] Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G. Static mixers in the process industries—a review. Chem Eng Res Des 2003;81(7):787–826. link1

[54] Fan LT, Hsu HH, Wang KB. Mass-transfer coefficient and pressure-drop data of two-phase oxygen–water flow in bubble column packed with static mixers. J Chem Eng Data 1975;20(1):26–8. link1

[55] Wang KB, Fan LT. Mass transfer in bubble columns packed with motionless mixers. Chem Eng Sci 1978;33(7):945–52. link1

[56] Hooshyar N, Vervloet D, Kapteijn F, Hamersma PJ, Mudde RF, Van Ommen JR. Intensifying the Fischer–Tropsch synthesis by reactor structuring—a model study. Chem Eng J 2012;207–208:865–70. link1

[57] Spiegel L, Meier W. Distillation columns with structured packings in the next decade. Chem Eng Res Des 2003;81(1):39–47. link1

[58] Horiuchi J, Tabata K, Kanno T, Kobayashi M. Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. J Biosci Bioeng 2000;89(2):126–30. link1

[59] Pangarkar K, Schildhauer TJ, Van Ommen JR, Nijenhuis J, Kapteijn F, Moulijn JA. Structured packings for multiphase catalytic reactors. Ind Eng Chem Res 2008;47(10):3720–51. link1

[60] Nijhuis TA, Kreutzer MT, Romijn ACJ, Kapteijn F, Moulijn JA. Monolithic catalysts as efficient three-phase reactors. Chem Eng Sci 2001;56(3):823–9. link1

[61] Pangarkar K, Schildhauer TJ, Van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Heat transport in structured packings with co-current downflow of gas and liquid. Chem Eng Sci 2010;65(1):420–6. link1

[62] Schildhauer TJ, Pangarkar K, Van Ommen JR, Nijenhuis J, Moulijn JA, Kapteijn F. Heat transport in structured packings with two-phase co-current downflow. Chem Eng J 2012;185–186:250–66. link1

[63] Baird MHI. Vibrations and pulsations-bane or blessing. Br Chem Eng 1966;11 (1):20–5. link1

[64] Ellenberger J, Krishna R. Improving mass transfer in gas–liquid dispersions by vibration excitement. Chem Eng Sci 2002;57(22–23):4809–15. link1

[65] Ellenberger J, Krishna R. Shaken, not stirred, bubble column reactors: enhancement of mass transfer by vibration excitement. Chem Eng Sci 2003;58(3–6):705–10. link1

[66] Ellenberger J, Van Baten JM, Krishna R. Intensification of bubble columns by vibration excitement. Catal Today 2003;79–80:181–8. link1

[67] Ellenberger J, Krishna R. Intensification of slurry bubble columns by vibration excitement. Can J Chem Eng 2003;81(3–4):655–9. link1

[68] Knopf FC, Ma J, Rice RG, Nikitopoulos D. Pulsing to improve bubble column performance: I. low gas rates. AIChE J 2006;52(3):1103–15. link1

[69] Knopf FC, Waghmare Y, Ma J, Rice RG. Pulsing to improve bubble column performance: II. jetting gas rates. AIChE J 2006;52(3):1116–26. link1

[70] Waghmare YG, Rice RG, Knopf FC. Mass transfer in a viscous bubble column with forced oscillations. Ind Eng Chem Res 2008;47(15):5386–94. link1

[71] Budzyn´ ski P, Dziubin´ ski M. Intensification of bubble column performance by introduction pulsation of liquid. Chem Eng Process 2014;78:44–57. link1

[72] Ellenberger J, Van Baten JM, Krishna R. Exploiting the Bjerknes force in bubble column reactors. Chem Eng Sci 2005;60(22):5962–70. link1

[73] Budzyn´ ski P, Gwiazda A, Dziubin´ ski M. Intensification of mass transfer in a pulsed bubble column. Chem Eng Process 2017;112:18–30. link1

[74] Hinze JO. Fundamentals of the hydrodynamic mechanism of splitting in dispersion process. AIChE J 1955;1(3):289–95. link1

[75] Buchanan RH, Jameson G, Oedjoe D. Cycle migration of bubbles in vertically vibrating liquid columns. Ind Eng Chem Fundam 1962;1(2):82–6. link1

[76] Krishna R, Sie ST. Design and scale-up of the Fischer–Tropsch bubble column slurry reactor. Fuel Process Technol 2000;64(1–3):73–105. link1

[77] Maretto C, Krishna R. Design and optimisation of a multi-stage bubble column slurry reactor for Fischer–Tropsch synthesis. Catal Today 2001;66(2– 4):241–8. link1

[78] Lucas MS, Reis NM, Li PG. Intensification of ozonation processes in a novel, compact, multi-orifice oscillatory baffled column. Chem Eng J 2016;296:335–9. link1

[79] Pereira FM, Sousa DZ, Alves MM, Mackley MR, Reis NM. CO2 dissolution and design aspects of a multiorifice oscillatory baffled column. Ind Eng Chem Res 2014;53(44):17303–16. link1

[80] Ahmed SMR, Phan AN, Harvey AP. Mass transfer enhancement as a function of oscillatory baffled reactor design. Chem Eng Process 2018;130:229–39. link1

[81] Ni X, Gao S. Scale-up correlation for mass transfer coefficients in pulsed baffled reactors. Chem Eng J Biochem Eng J 1996;63(3):157–66. link1

[82] Oliveira MSN, Fitch AW, Ni X. A study of bubble velocity and bubble residence time in a gassed oscillatory baffled column: effect of oscillation frequency. Chem Eng Res Des 2003;81(2):233–42. link1

[83] Oliveira MSN, Fitch AW, Ni XW. A study of velocity and residence time of single bubbles in a gassed oscillatory baffled column: effect of oscillation amplitude. J Chem Technol Biotechnol 2003;78(2–3):220–6. link1

[84] Oliveira MSN, Ni X. Gas hold-up and bubble diameters in a gassed oscillatory baffled column. Chem Eng Sci 2001;56(21–22):6143–8. link1

[85] Smith KB, Mackley MR. An experimental investigation into the scale-up of oscillatory flow mixing in baffled tubes. Chem Eng Res Des 2006;84 (11):1001–11. link1

[86] Laso M, de Brito MH, Bomio P, von Stockar U. Liquid-side mass transfer characteristics of a structured packing. Chem Eng J Biochem Eng J 1995;58 (3):251–8. link1

[87] Huang Q, Zhang W, Yang C, Mao ZS. Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor. CIESC J 2014;65 (7):2465–73. link1

[88] Tao J, Huang J, Xiao H, Yang C, Huang Q. Influences of interstage height and superficial gas velocity in multistage internal airlift loop reactor on performance of mixing and mass transfer. CIESC J 2018;69 (7):2878–89. link1

[89] Gluz MD, Merchuk JC. Modified airlift reactors: the helical flow promoters. Chem Eng Sci 1996;51(11):2915–20. link1

[90] Schlötelburg C, Popovic M, Gluz M, Merchuk JC. Characterization of an airlift reactor with helical flow promoters. Can J Chem Eng 1999;77 (5):804–10. link1

[91] Räsänen M, Eerikäinen T, Ojamo H. Characterization and hydrodynamics of a novel helix airlift reactor. Chem Eng Process 2016;108:44–57. link1

[92] Luo L, Yuan J, Xie P, Sun J, Guo W. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates. Chem Eng Res Des 2013;91(12):2377–88. link1

[93] Zheng Z, Chen Y, Zhan X, Gao M, Wang Z. Mass transfer intensification in a novel airlift reactor assembly with helical sieve plates. Chem Eng J 2018;342:61–70. link1

[94] Chisti Y, Kasper M, Moo-Young M. Mass transfer in external-loop airlift bioreactors using static mixers. Can J Chem Eng 1990;68(1):45–50. link1

[95] Goto S, Gaspillo PD. The effect of static mixer on mass transfer in draft tube bubble column and in external loop column. Chem Eng Sci 1992;47(13– 14):3533–9. link1

[96] Lu XP, Wang YR, Shi J. Transfer characteristics in mechanically stirred airlift loop reactors with or without static mixers. Chin J Chem Eng 2000;8 (3):208–11. link1

[97] Meng AX, Hill GA, Dalai AK. Hydrodynamic characteristics in an external loop airlift bioreactor containing a spinning sparger and a packed bed. Ind Eng Chem Res 2002;41(9):2124–8. link1

[98] Wu XX, Merchuk JC. Measurement of fluid flow in the downcomer of an internal loop airlift reactor using an optical trajectory-tracking system. Chem Eng Sci 2003;58(8):1599–614. link1

[99] Pi K, Huang L, Li Z, Gao L, Gerson AR. Oxygen mass transfer characteristics in an internal-loop airlift reactor with preset trumpet-shaped riser. Asia-Pac J Chem Eng 2014;9(6):834–44. link1

[100] Krichnavaruk S, Pavasant P. Analysis of gas–liquid mass transfer in an airlift contactor with perforated plates. Chem Eng J 2002;89(1–3):203–11. link1

[101] Vorapongsathorn T, Wongsuchoto P, Pavasant P. Performance of airlift contactors with baffles. Chem Eng J 2001;84(3):551–6. link1

[102] Zhang TW, Wang JF, Wang TF, Lin J, Jin Y. Effect of internal on the hydrodynamics in external-loop airlift reactors. Chem Eng Process 2005;44 (1):81–7. link1

[103] Yu W, Wang T, Song F, Wang Z. Investigation of the gas layer height in a multistage internal-loop airlift reactor. Ind Eng Chem Res 2009;48 (20):9278–85. link1

[104] Yu W, Wang T, Liu M, Song F. Investigation of operation regimes in a multistage internal-loop airlift reactor. Ind Eng Chem Res 2010;49 (22):11752–9. link1

[105] Hsu CH, Chu YF, Argin-Soysal S, Hahm TS, Lo YM. Effects of surface characteristics and xanthan polymers on the immobilization of Xanthomonas campestris to fibrous matrices. J Food Sci 2004;69(9):E441–8. link1

[106] Kilonzo P, Margaritis A, Bergougnou M. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. J Biotechnol 2009;143(1):60–8. link1

[107] Nikakhtari H, Hill GA. Enhanced oxygen mass transfer in an external loop airlift bioreactor using a packed bed. Ind Eng Chem Res 2005;44(4):1067–72. link1

[108] Nikakhtari H, Hill GA. Volatile organic chemical mass transfer in an external loop airlift bioreactor with a packed bed. Ind Eng Chem Res 2005;44 (24):9299–306. link1

[109] Nikakhtari H, Hill GA. Continuous bioremediation of phenol-polluted air in an external loop airlift bioreactor with a packed bed. J Chem Technol Biotechnol 2006;81(6):1029–38. link1

[110] Hamood-ur-Rehman M, Dahman Y, Ein-Mozaffari F. Investigation of mixing characteristics in a packed-bed external loop airlift bioreactor using tomography images. Chem Eng J 2012;213:50–61. link1

[111] Hamood-ur-Rehman M, Ein-Mozaffari F, Dahman Y. Dynamic and local gas holdup studies in external loop recirculating airlift reactor with two rolls of fiberglass packing using electrical resistance tomography. J Chem Technol Biotechnol 2013;88(5):887–96. link1

[112] Moraveji MK, Sajjadi B, Jafarkhani M, Davarnejad R. Experimental investigation and CFD simulation of turbulence effect on hydrodynamic and mass transfer in a packed bed airlift internal loop reactor. Int Commun Heat Mass Transfer 2011;38(4):518–24. link1

[113] Kilonzo PM, Margaritis A, Bergougnou MA. Hydrodynamics and mass transfer characteristics in an inverse internal loop airlift-driven fibrous-bed bioreactor. Chem Eng J 2010;157(1):146–60. link1

[114] Nikakhtari H, Hill GA. Hydrodynamic and oxygen mass transfer in an external loop airlift bioreactor with a packed bed. Biochem Eng J 2005;27(2):138–45. link1

[115] Tekic MN, Sijacki IM, Tokic MS, Kojic PS, Petrovic DL, Lukic NL, et al. Hydrodynamics of self-agitated draft tube airlift reactor. Chem Ind Chem Eng Q 2014;20(1):59–69. link1

[116] Lukic´ NL, Šijacˇki IM, Kojic´ PS, Popovic´ SS, Tekic´ MN, Petrovic´ DL. Enhanced hydrodynamics in a novel external-loop airlift reactor with self-agitated impellers. J Taiwan Inst Chem Eng 2016;68:40–50. link1

[117] Benham CB, Yakobson DL, Bohn MS, inventors; Rentech Inc., Res USA LLC, assignees. Catalyst/wax separation device for slurry Fischer–Tropsch reactor. United Sates patent US 6068760A. 2000 May 30.

[118] Pashkova A, Svajda K, Dittmeyer R. Direct synthesis of hydrogen peroxide in a catalytic membrane contactor. Chem Eng J 2008;139(1):165–71. link1

[119] Qi Y, Chen M, Liang S, Yang W, Zhao J. Micro-patterns of Au@SiO2 core–shell nanoparticles formed by electrostatic interactions. Appl Surf Sci 2008;254 (6):1684–90. link1

[120] Liu H, Wang Y, Han T, Huang Q. Influence of vortex finder configurations on separation of fine particles. CIESC J 2017;68(5):1921–31. link1

[121] Liu H, Han T, Wang Y, Huang Q. Influence of new outlet configurations with baffle on hydrocycloneon separation performance. CIESC J 2018;69 (5):2081–8. link1

[122] Rytter E, Lian P, Myrstad T, Roterud PT, Solbakken A, inventors; Statoil ASA, assignee. Method of conducting catalytic converter multi-phase reaction. United States patent US 5422375A 1995 Jun 6. link1

[123] Jager B, Steynberg AP, Inga JR, Kelfkens RC, Smith MA, Malherbe FEJ, inventors; Sasol Chemical Industries (Pty) Ltd., Sasol Technology Pty Ltd., assignees. Process for producing liquid and, optionally, gaseous products from gaseous reactants. United States patent US 5599849A. 1997 Feb 4.

[124] Anderson JH, inventor; Texaco Inc., assignee. Internal filter for Fischer– Tropsch catalyst/wax separation. United States patent US 6652760B2 2003 Nov 25. link1

[125] Clerici GCE, Belmonte G, invemtors;. ENI SpA, Institut Francais du Petrole, EniTechnologie SpA, assignees. Process for the production in continuous of hydrocarbons from synthesis gas in slurry reactions and for the separation of the liquid phase produced from the solid phase. United Kingdom patent GB 2403433B 2004 Jun 11. link1

[126] White CM, Quiring MS, Jensen KL, Hickey RF, Gillham LD, inventors; US Department of Energy, assignee. Separation of catalyst from Fischer–Tropsch slurry. United States patent US 5827903A. 1998 Oct 27.

[127] Hu L, Tang X, Zhang Z, Zhu Z, inventors; Sinopec, Sinopec Research Institute of Petroleum Processing, assignees. [A slurry bed reaction and separation equipment]. China patent CN 202823321U. 2013 Mar 27. Chinese.

[128] Hu L, Tang X, Zhang Z, Zhu Z, inventors; Sinopec, Sinopec Research Institute of Petroleum Processing, assignees. [A slurry airlift loop reactor and continuous separation equipment]. China patent CN 203018065U. 2013 Jun 26. Chinese.

[129] Papari S, Kazemeini M, Fattahi M. Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor. Chin J Chem Eng 2013;21(6):611–21. link1

[130] Thorat BN, Joshi JB. Regime transition in bubble columns: experimental and predictions. Exp Therm Fluid Sci 2004;28(5):423–30. link1

[131] Nabipoor Hassankiadeh M, Haghtalab A. Product distribution of Fischer– Tropsch synthesis in a slurry bubble column reactor based on Langmuir– Freundlich isotherm. Chem Eng Commun 2013;200(9):1170–86. link1

[132] Van der Laan GP, Beenackers AACM, Krishna R. Multicomponent reaction engineering model for Fe-catalyzed Fischer–Tropsch synthesis in commercial scale slurry bubble column reactors. Chem Eng Sci 1999;54(21):5013–9. link1

[133] Forret A, Schweitzer JM, Gauthier T, Krishna R, Schweich D. Scale up of slurry bubble reactors. Oil Gas Sci Technol 2006;61(3):443–58. link1

[134] Xing C, Wang T, Wang J. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column. Chem Eng Sci 2013;95:313–22. link1

[135] Van Baten JM, Krishna R. Eulerian simulation strategy for scaling up a bubble column slurry reactor for Fischer–Tropsch synthesis. Ind Eng Chem Res 2004;43(16):4483–93. link1

[136] Snape JB, Fialova M, Zahradnik J, Thomas NH. Hydrodynamic studies in an external loop airlift reactor containing aqueous electrolyte and sugar solutions. Chem Eng Sci 1992;47(13–14):3387–94. link1

[137] Luo L, Liu F, Xu Y, Yuan J. Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with different spargers. Chem Eng J 2011;175:494–504. link1

[138] Xiao H, Geng S, Chen A, Yang C, Gao F, He T, et al. Bubble formation in continuous liquid phase under industrial jetting conditions. Chem Eng Sci 2019;200:214–24. link1

[139] Lin J, Han M, Wang T, Zhang T, Wang J, Jin Y. Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor. Chem Eng J 2004;102(1):51–9. link1

[140] Wei C, Wu B, Li G, Chen K, Jiang M, Ouyang P. Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger. Bioprocess Biosyst Eng 2014;37(11):2289–304. link1

[141] Hooshyar N, Hamersma PJ, Mudde RF, Van Ommen JR. Intensified operation of slurry bubble columns using structured gas injection. Can J Chem Eng 2010;88(4):533–42. link1

[142] Hooshyar N, Hamersma PJ, Mudde RF, Van Ommen JR. Gas fraction and bubble dynamics in structured slurry bubble columns. Ind Eng Chem Res 2010;49(21):10689–97. link1

[143] Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J. Study of hydrodynamic behaviour in bubble columns and external loop airlift reactors through analysis of pressure fluctuations. Chem Eng Sci 2000;55 (15):2957–73. link1

[144] Cao C, Dong S, Geng Q, Guo Q. Hydrodynamics and axial dispersion in a gas– liquid–(solid) EL-ALR with different sparger designs. Ind Eng Chem Res 2008;47(11):4008–17. link1

[145] Han L, Al-Dahhan MH. Gas–liquid mass transfer in a high pressure bubble column reactor with different sparger designs. Chem Eng Sci 2007;62(1– 2):131–9. link1

[146] Michele V, Hempel DC. Liquid flow and phase holdup-measurement and CFD modeling for two- and three-phase bubble columns. Chem Eng Sci 2002;57 (11):1899–908. link1

[147] Li H, Prakash A. Heat transfer and hydrodynamics in a three-phase slurry bubble column. Ind Eng Chem Res 1997;36(11):4688–94. link1

[148] Gandhi B, Prakash A, Bergougnou MA. Hydrodynamic behavior of slurry bubble column at high solids concentrations. Powder Technol 1999;103 (2):80–94. link1

[149] Yang GQ, Du B, Fan LS. Bubble formation and dynamics in gas–liquid–solid fluidization—a review. Chem Eng Sci 2007;62(1–2):2–27. link1

[150] Maretto C, Krishna R. Modelling of a bubble column slurry reactor for Fischer–Tropsch synthesis. Catal Today 1999;52(2–3):279–89. link1

[151] Rabha S, Schubert M, Wagner M, Lucas D, Hampel U. Bubble size and radial gas hold-up distributions in a slurry bubble column using ultrafast electron beam X-ray tomography. AIChE J 2013;59(5):1709–22. link1

[152] Wang TF, Wang JF, Yang WG, Jin Y. Experimental study on bubble behavior in gas–liquid–solid three-phase circulating fluidized beds. Powder Technol 2003;137(1–2):83–90. link1

[153] Abdel-Aziz MH, Nirdosh I, Sedahmed GH. Liquid–solid mass and heat transfer behavior of a concentric tube airlift reactor. Int J Heat Mass Transfer 2013;58 (1–2):735–9. link1

[154] Guth E, Simha R. Explorations of the viscosity of suspensions and solutions 3. The viscosity of sphere suspensions (the calculation of wall influence and the exchange effect in viscosity as well as in rotating spheres). Kolloid-Zeitschrift 1936;74(3):266–75. German. link1

[155] Vand V. Viscosity of solutions and suspensions. I. Theory. J Phys Colloid Chem 1948;52(2):277–99. link1

[156] Roscoe R. The viscosity of suspensions of rigid spheres. Br J Appl Phys 1952;3 (8):267–9. link1

[157] Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys 1952;20(4):571. link1

[158] Bakopoulos A. Fluid dynamics and mixing in three-phase coal and oil residue hydrogenation sieve cascade reactors. Chem Eng Sci 2001;56(17):5131–45. link1

[159] Thomas DG. Transport characteristics of suspension: VIII. a note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 1965;20(3):267–77. link1

[160] Ford TF. Viscosity-concentration and fluidity-concentration relationships for suspensions of spherical particles in Newtonian liquids. J Phys Chem 1960;64 (9):1168–74. link1

[161] Eilers H. The viscosity of the emulsion of highly viscous substances as function of concentration. Kolloid-Zeitschrift 1941;97(3):313–21. German. link1

[162] Chong JS, Christiansen EB, Baer AD. Rheology of concentrated suspensions. J Appl Polym Sci 1971;15(8):2007–21. link1

[163] Fedors RF. Relationships between viscosity and concentration for Newtonian suspensions. J Colloid Interface Sci 1974;46(3):545–7. link1

[164] Frankel NA, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 1967;22(6):847–53. link1

[165] Quemada D. Rheology of concentrated disperse systems and minimum energy dissipation principle. I. Viscosity–concentration relationship. Rheol Acta 1977;16(1):82–94. link1

[166] Mooney M. The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 1951;6(2):162–70. link1

[167] Kawase Y, Ulbrecht JJ. Rheological properties of suspensions of solid spheres in non-Newtonian fluids. Chem Eng Commun 1983;20(3–4):127–36. link1

[168] Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 1959;3(1):137–52. link1

[169] Sengun MZ, Probstein RF. High-shear-limit viscosity and the maximum packing fraction in concentrated monomodal suspensions. Physicochem Hydrodyn 1989;11(2):229–41. link1

[170] Rabha S, Schubert M, Hampel U. Hydrodynamic studies in slurry bubble columns: experimental and numerical study. Chem Ing Tech 2013;85 (7):1092–8. link1

[171] Chilekar VP, Warnier MJF, Van der Schaaf J, Kuster BFM, Schouten JC, Van Ommen JR. Bubble size estimation in slurry bubble columns from pressure fluctuations. AIChE J 2005;51(7):1924–37. link1

[172] Luo XK, Lee DJ, Lau R, Yang GQ, Fan LS. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE J 1999;45(4):665–80. link1

[173] Vandu CO, Koop K, Krishna R. Large bubble sizes and rise velocities in a bubble column slurry reactor. Chem Eng Technol 2004;27(11):1195–9. link1

[174] Kelkar BG, Shah YT, Carr NL. Hydrodynamics and axial mixing in a threephase bubble column. Effects of slurry properties. Ind Eng Chem Process Des Dev 1984;23(2):308–13. link1

[175] Sada E, Kumazawa H, Lee CH. Influences of suspended fine particles on gas holdup and mass transfer characteristics in a slurry bubble column. AIChE J 1986;32(5):853–6. link1

[176] Jamialahmadi M, Müller-Steinhagen H. Effect of solid particles on gas hold-up in bubble columns. Can J Chem Eng 1991;69(1):390–3. link1

[177] Mena PC, Ruzicka MC, Rocha FA, Teixeira JA, Drahoš J. Effect of solids on homogeneous–heterogeneous flow regime transition in bubble columns. Chem Eng Sci 2005;60(22):6013–26. link1

[178] Milivojevic M, Pavlou S, Bugarski B. Liquid velocity in a high-solids-loading three-phase external-loop airlift reactor. J Chem Technol Biotechnol 2012;87 (11):1529–40. link1

[179] Murray P, Fan LS. Axial solids distribution in slurry bubble columns. Ind Eng Chem Res 1989;28(11):1697–703. link1

[180] Zhang K. Axial solid concentration distribution in tapered and cylindrical bubble columns. Chem Eng J 2002;86(3):299–307. link1

[181] Shaikh A, Al-Dahhan M. Scale-up of bubble column reactors: a review of current state-of-the-art. Ind Eng Chem Res 2013;52(24):8091–108. link1

[182] Onozaki M, Namiki Y, Ishibashi H, Kobayashi M, Itoh H, Hiraide M, et al. A process simulation of the NEDOL coal liquefaction process. Fuel Process Technol 2000;64(1–3):253–69. link1

[183] Jakobsen HA, Lindborg H, Dorao CA. Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 2005;44(14):5107–51. link1

[184] Cao C, Dong S, Guo Q. Experimental and numerical simulation for gas–liquid phases flow structure in an external-loop airlift reactor. Ind Eng Chem Res 2007;46(22):7317–27. link1

[185] Joshi JB. Computational flow modelling and design of bubble column reactors. Chem Eng Sci 2001;56(21–22):5893–933. link1

[186] Zhang L, Huang Q. Research progress in the modeling theory of airlift loop reactor. Chin J Process Eng 2011;11(1):86–97. link1

[187] Tomiyama A. Drag, lift and virtual mass forces acting on a single bubble. In: Proceedings of the Third International Symposium on Two-Phase Flow Modeling and Experimentation; 2004 Sept 22–24; Pisa, Italy; 2004. link1

[188] Troshko AA, Hassan YA. A two-equation turbulence model of turbulent bubbly flows. Int J Multiph Flow 2001;27(11):1965–2000. link1

[189] Pfleger D, Becker S. Modelling and simulation of the dynamic flow behaviour in a bubble column. Chem Eng Sci 2001;56(4):1737–47. link1

[190] Zhang D, Deen NG, Kuipers JAM. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces. Chem Eng Sci 2006;61(23):7593–608. link1

[191] Huang Q, Yang C, Yu G, Mao ZS. CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chem Eng Sci 2010;65(20):5527–36. link1

[192] Huang Q, Yang C, Yu G, Mao ZS. Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model. Chem Eng Technol 2008;31(12):1790–8. link1

[193] Oey RS, Mudde RF, Portela LM, Van den Akker HEA. Simulation of a slurry airlift using a two-fluid model. Chem Eng Sci 2001;56(2):673–81. link1

[194] Wang TF, Wang JF, Jin Y. Experimental study and CFD simulation of hydrodynamic behaviours in an external loop airlift slurry reactor. Can J Chem Eng 2004;82(6):1183–90. link1

[195] Chen P, Dudukovic´ MP, Sanyal J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup. AIChE J 2005;51 (3):696–712. link1

[196] Chen P, Sanyal J, Dudukovic´ MP. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem Eng Sci 2005;60(4):1085–101. link1

[197] Frank T, Zwart PJ, Shi JM, Krepper E, Lucas D, Rohde U. Inhomogeneous MUSIG model—a population balance approach for polydispersed bubbly flows. In: Proceedings of International Conference for Nuclear Energy for New Europe; 2005 Sept 5–8; Bled, Slovenia; 2005. link1

[198] Yang N, Xiao Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors. Chem Eng Sci 2017;170:241–50. link1

[199] Lehr F, Millies M, Mewes D. Bubble-size distributions and flow fields in bubble columns. AIChE J 2004;48(11):2426–43. link1

[200] Ni X, Jian H, Fitch AW. Computational fluid dynamic modelling of flow patterns in an oscillatory baffled column. Chem Eng Sci 2002;57 (14):2849–62. link1

[201] Lestinsky P, Vecer M, Vayrynen P, Wichterle K. The effect of the draft tube geometry on mixing in a reactor with an internal circulation loop—a CFD simulation. Chem Eng Process 2015;94:29–34. link1

[202] Pan Y, Dudukovic MP, Chang M. Numerical investigation of gas-driven flow in 2-D bubble columns. AIChE J 2004;46(3):434–49. link1

[203] Luo H, Svendsen HF. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J 1996;42(5):1225–33. link1

[204] Prince MJ, Blanch HW. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J 1990;36(10):1485–99. link1

[205] Lo S. Application of MUSIG model to bubbly flows. AEA Technol 1996;230:8216–46. link1

[206] Bhole MR, Joshi JB, Ramkrishna D. CFD simulation of bubble columns incorporating population balance modeling. Chem Eng Sci 2008;63 (8):2267–82. link1

[207] Pendyala VRR, Jacobs G, Luo M, Davis BH. Fischer–Tropsch synthesis: effect of start-up solvent in a slurry reactor. Catal Lett 2013;143(5):395–400. link1

[208] Sehabiague L, Lemoine R, Behkish A, Heintz YJ, Sanoja M, Oukaci R, et al. Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer–Tropsch liquid hydrocarbons. J Chin Inst Chem Eng 2008;39(2):169–79. link1

[209] Choi KH, Chisti Y, Moo-Young M. Comparative evaluation of hydrodynamic and gas–liquid mass transfer characteristics in bubble column and airlift slurry reactors. Chem Eng J Biochem Eng J 1996;62(3):223–9. link1

[210] Lu X, Ding J, Wang Y, Shi J. Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors. Chem Eng Sci 2000;55(12):2257–63. link1

[211] Ren X, Fang D, Jin J, Gao J. Study on flow patterns in different types of direct coal liquefaction reactors. Asia-Pac J Chem Eng 2009;4(5):563–7. link1

[212] Han T, Liu H, Xiao H, Chen A, Huang Q. Experimental study of the effects of apex section internals and conical section length on the performance of solid–liquid hydrocyclone. Chem Eng Res Des 2019;145:12–8. link1

[213] Dudukovic MP. Reaction engineering: status and future challenges. Chem Eng Sci 2010;65(1):3–11. link1

Related Research