Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 10, Issue 3 doi: 10.1016/j.eng.2021.05.022

Data Centric Design: A New Approach to Design of Microstructural Material Systems

a Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
b Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA

Received: 2020-08-10 Revised: 2020-10-14 Accepted: 2021-05-11 Available online: 2022-02-18

Next Previous

Abstract

Building processing, structure, and property (PSP) relations for computational materials design is at the heart of the Materials Genome Initiative in the era of high-throughput computational materials science. Recent technological advancements in data acquisition and storage, microstructure characterization and reconstruction (MCR), machine learning (ML), materials modeling and simulation, data processing, manufacturing, and experimentation have significantly advanced researchers’ abilities in building PSP relations and inverse material design. In this article, we examine these advancements from the perspective of design research. In particular, we introduce a data-centric approach whose fundamental aspects fall into three categories: design representation, design evaluation, and design synthesis. Developments in each of these aspects are guided by and benefit from domain knowledge. Hence, for each aspect, we present a wide range of computational methods whose integration realizes data-centric materials discovery and design.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

References

[ 1 ] National Science and Technology Council (US). Materials genome initiative for global competitiveness [Internet]. Washington DC: Executive Office of the President, National Science and Technology Council; 2011 Jun 24. Available from: https://www.mgi.gov/sites/ default/files/documents/materials_genome_initiative-final.pdf. link1

[ 2 ] Olson GB. Preface to the viewpoint set on: the materials genome. Scr Mater 2014;70:1–2. link1

[ 3 ] Ward C. Materials Genome Initiative for global competitiveness. In: Proceedings of the 23rd Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition; 2012 Jun 18–21; Charlotte, NC, USA; 2012.

[ 4 ] McDowell DL, Kalidindi SR. The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bull 2016;41(4):326–37. link1

[ 5 ] Olson GB. Computational design of hierarchically structured materials. Science 1997;277(5330):1237–42. link1

[ 6 ] Olson GB. Designing a new material world. Science 2000;288(5468):993–8. link1

[ 7 ] Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR. Microstructure sensitive design for performance optimization. Prog Mater Sci 2010;55(6):477–562. link1

[ 8 ] Committee on Integrated Computational Materials Engineering.. Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. Washington DC: National Academies Press; 2008. link1

[ 9 ] Torquato S. Random heterogeneous materials: microstructure and macroscopic properties. New York: Springer-Verlag New York; 2002.

[10] Kumar H, Briant CL, Curtin WA. Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech Mater 2006;38(8- 10):818–32. link1

[11] Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the ‘‘fourth paradigm” of science in materials science. APL Mater 2016;4(5):053208. link1

[12] Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. The highthroughput highway to computational materials design. Nat Mater 2013;12 (3):191–201. link1

[13] Zhao H, Li X, Zhang Y, Schadler LS, Chen W, Brinson LC. Perspective: NanoMine: a material genome approach for polymer nanocomposites analysis and design. APL Mater 2016;4(5):053204. link1

[14] Zhao H, Wang Y, Lin A, Hu B, Yan R, McCusker J, et al. NanoMine schema: an extensible data representation for polymer nanocomposites. APL Mater 2018;6(11):111108. link1

[15] Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1(1):011002. link1

[16] Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 2013;65(11):1501–9. link1

[17] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, et al. AFLOWLIB. ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 2012;58:227–35. link1

[18] Bostanabad R. Reconstruction of 3D microstructures from 2D images via transfer learning. Comput Aided Des 2020;128:102906. link1

[19] Koch W, Holthausen MC. A chemist’s guide to density functional theory. 2nd ed. Medford: John Wiley & Sons; 2015. link1

[20] Parr RG. Density functional theory of atoms and molecules. In: Fukui K, Pullman A, editors. Horizons of quantum chemistry. Dordrecht: Springer; 1980. p. 5–15. link1

[21] Duan K, He Y, Li Y, Liu J, Zhang J, Hu Y, et al. Machine-learning assisted coarsegrained model for epoxies over wide ranges of temperatures and crosslinking degrees. Mater Des 2019;183:108130. link1

[22] Bejagam KK, Singh S, An Y, Deshmukh SA. Machine-learned coarse-grained models. J Phys Chem Lett 2018;9(16):4667–72. link1

[23] Wang W, Gómez-Bombarelli R. Coarse-graining auto-encoders for molecular dynamics. npj Comput Mater 2019;5(1):1–9. link1

[24] Himanen L, Geurts A, Foster AS, Rinke P. Data-driven materials science: status, challenges, and perspectives. Adv Sci 2019;6(21):1900808. link1

[25] Brinson LC, Deagen M, Chen W, McCusker J, McGuinness DL, Schadler LS, et al. Polymer nanocomposite data: curation, frameworks, access, and potential for discovery and design. ACS Macro Lett 2020;9(8):1086–94. link1

[26] Therneau T, Atkinson B, Ripley B. rpart: recursive partitioning and regression trees. Version 4.1-10 [software]. 2019 May 1. Available from: https://rdrr.io/ cran/rpart/. link1

[27] Blaiszik B, Chard K, Pruyne J, Ananthakrishnan R, Tuecke S, Foster I. The materials data facility: data services to advance materials science research. JOM 2016;68(8):2045–52. link1

[28] Blaiszik B, Ward L, Schwarting M, Gaff J, Chard R, Pike D, et al. A data ecosystem to support machine learning in materials science. MRS Commun 2019;9(4):1125–33. link1

[29] Bostanabad R, Zhang Y, Li X, Kearney T, Brinson LC, Apley DW, et al. Computational microstructure characterization and reconstruction: review of the state-of-the-art techniques. Prog Mater Sci 2018;95:1–41. link1

[30] Yeong CLY, Torquato S. Reconstructing random media. Phys Rev E 1998;57 (1):495–506. link1

[31] Yeong CLY, Torquato S. Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys Rev E 1998;58(1):224–33. link1

[32] Xu H, Dikin DA, Burkhart C, Chen W. Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 2014;85:206–16. link1

[33] Xu H, Li Y, Brinson C, Chen W. A descriptor-based design methodology for developing heterogeneous microstructural materials system. J Mech Des 2014;136(5):051007. link1

[34] Snyder VA, Alkemper J, Voorhees PW. The development of spatial correlations during Ostwald ripening: a test of theory. Acta Mater 2000;48(10): 2689–701. link1

[35] DeHoff RT. A geometrically general-theory of diffusion controlled coarsening. Acta Metall Mater 1991;39(10):2349–60. link1

[36] Li M, Ghosh S, Richmond O, Weiland H, Rouns TN. Three dimensional characterization and modeling of particle reinforced metal matrix composites: part I: quantitative description of microstructural morphology. Mater Sci Eng A 1999;265(1-2):153–73. link1

[37] Nan CW, Clarke DR. The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites. Acta Mater 1996;44 (9):3801–11. link1

[38] Breneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M, Wu K, et al. Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 2013;23(46):5746–52. link1

[39] Zhang Y, Zhao H, Hassinger I, Brinson LC, Schadler LS, Chen W. Microstructure reconstruction and structural equation modeling for computational design of nanodielectrics. Integr Mater Manuf Innov 2015;4:209–34. link1

[40] Karásek L, Sumita M. Characterization of dispersion state of filler and polymer-filler interactions in rubber–carbon black composites. J Mater Sci 1996;31:281–9. link1

[41] Yuan M, Turng LS. Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites. Polymer 2005;46 (18):7273–92. link1

[42] Baghgar M, Barnes AM, Pentzer E, Wise AJ, Hammer BAG, Emrick T, et al. Morphology-dependent electronic properties in cross-linked (P3HT-b-P3MT) block copolymer nanostructures. ACS Nano 2014;8(8):8344–9. link1

[43] Rollett AD, Lee SB, Campman R, Rohrer GS. Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu Rev Mater Res 2007;37:627–58. link1

[44] Sundararaghavan V, Zabaras N. Classification and reconstruction of threedimensional microstructures using support vector machines. Comput Mater Sci 2005;32(2):223–39. link1

[45] Bostanabad R, Bui AT, Xie W, Apley DW, Chen W. Stochastic microstructure characterization and reconstruction via supervised learning. Acta Mater 2016;103:89–102. link1

[46] Bostanabad R, Chen W, Apley DW. Characterization and reconstruction of 3D stochastic microstructures via supervised learning. J Microsc 2016;264 (3):282–97. link1

[47] Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W. A transfer learning approach for microstructure reconstruction and structure–property predictions. Sci Rep 2018;8(1):13461. link1

[48] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. arXiv:1409.1556.

[49] Cang R, Xu Y, Chen S, Liu Y, Jiao Y, Ren MY. Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design. J Mech Des 2017;139(7):071404. link1

[50] Yang Z, Li X, Catherine Brinson L, Choudhary AN, Chen W, Agrawal A. Microstructural materials design via deep adversarial learning methodology. J Mech Des 2018;140(11):111416. link1

[51] Yu S, Zhang Y, Wang C, Lee WK, Dong B, Odom TW, et al. Characterization and design of functional quasi-random nanostructured materials using spectral density function. J Mech Des 2017;139(7):071401. link1

[52] Uche OU, Stillinger FH, Torquato S. Constraints on collective density variables: two dimensions. Phys Rev E 2004;70(4):046122. link1

[53] Uche OU, Torquato S, Stillinger FH. Collective coordinate control of density distributions. Phys Rev E 2006;74(3):031104. link1

[54] Batten RD, Stillinger FH, Torquato S. Classical disordered ground states: super-ideal gases and stealth and equi-luminous materials. J Appl Phys 2008;104(3):033504. link1

[55] Florescu M, Torquato S, Steinhardt PJ. Designer disordered materials with large, complete photonic band gaps. Proc Natl Acad Sci 2009;106 (49):20658–63. link1

[56] Cahn JW. Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 1965;42(1):93–9. link1

[57] Teubner M. Level surfaces of Gaussian random fields and microemulsions. EPL 1991;14(5):403–8. link1

[58] Chen D, Torquato S. Designing disordered hyperuniform two-phase materials with novel physical properties. Acta Mater 2018;142:152–61. link1

[59] Iyer A, Dulal R, Zhang Y, Ghumman UF, Chien T, Balasubramanian G, et al. Designing anisotropic microstructures with spectral density function. Comput Mater Sci 2020;179:109559. link1

[60] Chen G, Shen Z, Iyer A, Ghumman UF, Tang S, Bi J, et al. Machine-learningassisted de novo design of organic molecules and polymers: opportunities and challenges. Polymers 2020;12(1):163. link1

[61] Johnson NS, Vulimiri PS, To AC, Zhang X, Brice CA, Kappes BB, et al. Invited review: machine learning for materials developments in metals additive manufacturing. Addit Manuf 2020;36:101641. link1

[62] Bock FE, Aydin RC, Cyron CJ, Huber N, Kalidindi SR, Klusemann B. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front Mater 2019;6:110. link1

[63] Bostanabad R, Chan YC, Wang LW, Zhu P, Chen W. Globally approximate Gaussian processes for big data with application to data-driven metamaterials design. J Mech Des 2019;141(11):111402. link1

[64] Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157–82. link1

[65] Xu H, Liu R, Choudhary A, Chen W. A machine learning-based design representation method for designing heterogeneous microstructures. J Mech Des 2015;137(5):051403. link1

[66] Robnik-Šikonja M, Kononenko I. An adaptation of Relief for attribute estimation in regression. In: Proceedings of the Fourteenth International Conference on Machine Learning; 1997 Jul 8–12; Nashville, TN, USA. San Francisco: Morgan Kaufmann Publishers, Inc.; 1997. p. 296–304.

[67] Fabrigar LR, Wegener DT, MacCallum RC, Strahan EJ. Evaluating the use of exploratory factor analysis in psychological research. Psychol Methods 1999;4(3):272–99. link1

[68] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science 2000;290(5500):2323–6. link1

[69] Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000;290(5500):2319–23. link1

[70] Jolliffe IT. Principal component analysis. In: Everitt BS, Howell D, editors. Encyclopedia of statistics in behavioral science. Hoboken: John Wiley & Sons, Inc.; 2005. link1

[71] Yabansu YC, Steinmetz P, Hötzer J, Kalidindi SR, Nestler B. Extraction of reduced-order process-structure linkages from phase-field simulations. Acta Mater 2017;124:182–94. link1

[72] Popova E, Rodgers TM, Gong X, Cecen A, Madison JD, Kalidindi SR. Processstructure linkages using a data science approach: application to simulated additive manufacturing data. Integr Mater Manuf Innov 2017;6(1):54–68. link1

[73] Paulson NH, Priddy MW, McDowell DL, Kalidindi SR. Reduced-order structure–property linkages for polycrystalline microstructures based on 2- point statistics. Acta Mater 2017;129:428–38. link1

[74] Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich T, Becker S, Ghahramani Z, editors. Advances in neural information processing systems. Cambridge: MIT Press; 2001. p. 585–91. link1

[75] Donoho DL, Grimes C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci 2003;100 (10):5591–6. link1

[76] Saxena A, Gupta A, Mukerjee A. Non-linear dimensionality reduction by locally linear isomaps. In: Proceedings of the 11th international conference on neural information processing; 2004 Nov 22–25; Calcutta, India. Berlin: Springer, p. 1038–43.

[77] Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. London: Taylor & Francis Group; 1984. link1

[78] Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13(1):21–7. link1

[79] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20 (3):273–97. link1

[80] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory; 1992 Jul 27–29; Pittsburgh, PA, USA; 1992; p. 144–152.

[81] Breiman L. Random forests. Mach Learn 2001;45(1):5–32. link1

[82] Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 2018;120(14):145301. link1

[83] Park CW, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys Rev Mater 2020;4(6):063801. link1

[84] Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988;28(1):31–6. link1

[85] Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, SánchezLengeling B, Sheberla D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018;4(2):268–76. link1

[86] Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018;4(7):aap7885. link1

[87] Tao S, Shintani K, Bostanabad R, Chan YC, Yang G, Meingast H, et al. Enhanced Gaussian process metamodeling and collaborative optimization for vehicle suspension design optimization. In: Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2017 Aug 6–9; Cleveland, OH, USA; 2017.

[88] Bostanabad R, Kearney T, Tao S, Apley DW, Chen W. Leveraging the nugget parameter for efficient Gaussian process modeling. Int J Numer Methods Eng 2018;114(5):501–16. link1

[89] Zhang Y, Tao S, Chen W, Apley DW. A latent variable approach to Gaussian process modeling with qualitative and quantitative factors. Technometrics 2020;62(3):291–302. link1

[90] Zhang Y, Apley DW, Chen W. Bayesian optimization for materials design with mixed quantitative and qualitative variables. Sci Rep 2020;10(1):4924. link1

[91] Iyer A, Zhang Y, Prasad A, Tao S, Wang Y, Schadler L, et al. Data centric mixed variable Bayesian optimization for materials design. In: Proceedings of the ASME International Design Engineering Technical Conference; 2019 Aug 18– 21; Anaheim, CA, USA; 2019.

[92] Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T. Adaptive strategies for materials design using uncertainties. Sci Rep 2016;6(1):19660. link1

[93] Li C, de Celis Leal DR, Rana S, Gupta S, Sutti A, Greenhill S, et al. Rapid Bayesian optimisation for synthesis of short polymer fiber materials. Sci Rep 2017;7(1):5683. link1

[94] Yamashita T, Sato N, Kino H, Miyake T, Tsuda K, Oguchi T. Crystal structure prediction accelerated by Bayesian optimization. Phys Rev Mater 2018;2 (1):013803. link1

[95] Lookman T, Balachandran PV, Xue D, Yuan R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj Comput Mater 2019;5(1):21. link1

[96] Mockus J, Tiesis V, Zilinskas A. The application of Bayesian methods for seeking the extremum. In: Dixon LCW, Szego GP, editors. Towards global optimization. Amsterdam: Elsevier; 1978. p. 117–29. link1

[97] Kushner HJ. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J Basic Eng 1964;86(1):97–106. link1

[98] Wang Y, Zhang Y, Zhao H, Li X, Huang Y, Schadler LS, et al. Identifying interphase properties in polymer nanocomposites using adaptive optimization. Compos Sci Technol 2018;162:146–55. link1

[99] Zhang Y, Notz WI. Computer experiments with qualitative and quantitative variables: a review and reexamination. Qual Eng 2015;27(1):2–13. link1

[100] McMillan NJ, Sacks J, Welch WJ, Gao F. Analysis of protein activity data by Gaussian stochastic process models. J Biopharm Stat 1999;9(1):145–60. link1

[101] Wang Y, Iyer A, Chen W, Rondinelli JM. Featureless adaptive optimization accelerates functional electronic materials design. Appl Phys Rev 2020;7:041403. link1

Related Research