Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 9, Issue 2 doi: 10.1016/j.eng.2021.06.020

Engineered Vasculature for Organ-on-a-Chip Systems

a State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
b School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
c The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
d School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Received: 2020-12-11 Revised: 2021-06-10 Accepted: 2021-06-20 Available online: 2021-08-19

Next Previous

Abstract

Organ-on-a-chip technology, a promising three-dimensional (3D) dynamic culture method, ensures accurate and efficient cell culture and has great potential for replacing animal models in preclinical testing. The circulatory system, the most abundant organ in the human body, plays a crucial role in oxygen exchange and mass transfer, which is the determining factor for the survival of tissues and organs. Thus, it is essential to integrate the circulatory system into an organ-on-a-chip to recreate tissue and organ microenvironments and physiological functions. This review discusses the synergy between the vasculature and the emerging organ-on-a-chip technology, which offers even better possibilities of duplicating physiology and disease characteristics. In addition, we review the different steps of a vascularized organ-on-a-chip fabrication process, including structure fabrication and tissue construction using different biofabrication strategies. Finally, we outline the applicability of this technology in the fascinating and fast-developing field of organ and tumor culture.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. Br Med Bull 2009;92(1):7–32. link1

[ 2 ] Van Norman GA. Drugs, devices, and the FDA: part 1: an overview of approval processes for drugs. JACC Basic Transl Sci 2016;1(3):170–9. link1

[ 3 ] Lipsky MS, Sharp LK. From idea to market: the drug approval process. J Am Board Fam Pract 2001;14(5):362–7. link1

[ 4 ] Zhang YS, Khademhosseini A. Engineering in vitro human tissue models through bio-design and manufacturing. Biodes Manuf 2020;3(3):155–9. link1

[ 5 ] Ma L, Li Y, Wu Y, Aazmi A, Zhang B, Zhou H, et al. The construction of in vitro tumor models based on 3D bioprinting. Biodes Manuf 2020;3(3):227–36. link1

[ 6 ] Mehta V, Rath SN. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes Manuf 2021;4(2):311–43. link1

[ 7 ] Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 2013;13(18): 3599–608. link1

[ 8 ] Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 2016;16(3):599–610. link1

[ 9 ] Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016;110:45–59. link1

[10] Shang Y, Chen Z, Zhang Z, Yang Y, Zhao Y. Heart-on-chips screening based on photonic crystals. Biodes Manuf 2020;3(3):266–80. link1

[11] Seo J, Huh D. Microphysiological models of human organs: a case study on microengineered lung-on-a-chip systems. In: Borenstein JT, Tandon V, Tao SL, Charest JL, editors. Microfluidic cell culture systems. Amsterdam: Elsevier; 2018. p. 187–208. link1

[12] Felder M, Trueeb B, Stucki AO, Borcard S, Stucki JD, Schnyder B, et al. Impaired wound healing of alveolar lung epithelial cells in a breathing lung-on-a-chip. Front Bioeng Biotechnol 2019;7:3. link1

[13] Hou W, Hu S, Yong K, Zhang J, Ma H. Cigarette smoke-induced malignant transformation via STAT3 signalling in pulmonary epithelial cells in a lungon-a-chip model. Biodes Manuf 2020;3(4):383–95. link1

[14] Grix T, Ruppelt A, Thomas A, Amler AK, Noichl B, Lauster R, et al. Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications. Genes 2018;9(4):176. link1

[15] Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016;8(1):014101. link1

[16] Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör M. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication 2017;9(1):015014. link1

[17] Ng WL, Yeong WY. The future of skin toxicology testing—three-dimensional bioprinting meets microfluidics. Int J Bioprinting 2019;5(2.1):237. link1

[18] Sutterby E, Thurgood P, Baratchi S, Khoshmanesh K, Pirogova E. Microfluidic skin-on-a-chip models: toward biomimetic artificial skin. Small 2020;16(39): 2002515. link1

[19] Wufuer M, Lee G, Hur W, Jeon B, Kim BJ, Choi TH, et al. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment. Sci Rep 2016;6(1): 37471. link1

[20] Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, et al. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 2019;10(1):2621. link1

[21] Brown TD, Nowak M, Bayles AV, Prabhakarpandian B, Karande P, Lahann J, et al. A microfluidic model of human brain (lHuB) for assessment of blood brain barrier. Bioeng Transl Med 2019;4(2):e10126. link1

[22] Bang S, Jeong S, Choi N, Kim HN. Brain-on-a-chip: a history of development and future perspective. Biomicrofluidics 2019;13(5):051301. link1

[23] Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS. Kidneyon-a-chip: untapped opportunities. Kidney Int 2018;94(6):1073–86.

[24] Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-achip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 2016;34(2):156–70.

[25] Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small 2020;16(15): 1902838. link1

[26] Johnson BN, Lancaster KZ, Hogue IB, Meng F, Kong YL, Enquist LW, et al. 3D printed nervous system on a chip. Lab Chip 2016;16(8):1393–400. link1

[27] Lee H, Cho DW. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 2016;16(14): 2618–25. link1

[28] Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, et al. Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 2016;6(1):34845. link1

[29] Lenoir L, Segonds F, Nguyen KA, Bartolucci P. A methodology to develop a vascular geometry for in vitro cell culture using additive manufacturing. Int J Bioprint 2019;5(2):238. link1

[30] Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed Engl 1998;37(5): 550–75. link1

[31] Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 2015;15(24): 4542–54. link1

[32] Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 2012;109(24):9342–7. link1

[33] Miali ME, Colasuonno M, Surdo S, Palomba R, Pereira R, Rondanina E, et al. Leaf-inspired authentically complex microvascular networks for deciphering biological transport process. ACS Appl Mater Interfaces 2019;11(35): 31627–37. link1

[34] Nie J, Gao Q, Xie C, Lv S, Qiu J, Liu Y, et al. Construction of multi-scale vascular chips and modelling of the interaction between tumours and blood vessels. Mater Horiz 2020;7(1):82–92. link1

[35] Li CW, Cheung CN, Yang J, Tzang CH, Yang M. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters. Analyst 2003;128(9):1137–42. link1

[36] Revzin A, Russell RJ, Yadavalli VK, Koh WG, Deister C, Hile DD, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir 2001;17(18):5440–7. link1

[37] Cokelet GR, Soave R, Pugh G, Rathbun L. Fabrication of in vitro microvascular blood flow systems by photolithography. Microvasc Res 1993;46(3):394–400. link1

[38] Fenech M, Girod V, Claveria V, Meance S, Abkarian M, Charlot B. Microfluidic blood vasculature replicas using backside lithography. Lab Chip 2019;19(12): 2096–106. link1

[39] Kappings V, Grün C, Ivannikov D, Hebeiss I, Kattge S, Wendland I, et al. vasQchip: a novel microfluidic, artificial blood vessel scaffold for vascularized 3D tissues. Adv Mater Technol 2018;3(4):1700246. link1

[40] Haase K, Kamm RD. Advances in on-chip vascularization. Regen Med 2017;12(3):285–302. link1

[41] Wang X, Sun Q, Pei J. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models. Micromachines 2018;9(10):493. link1

[42] Lee-Montiel FT, George SM, Gough AH, Sharma AD, Wu J, DeBiasio R, et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med 2017;242(16):1617–32. link1

[43] Zhang YS, Davoudi F, Walch P, Manbachi A, Luo X, Dell’Erba V, et al. Bioprinted thrombosis-on-a-chip. Lab Chip 2016;16(21):4097–105. link1

[44] Kwak B, Ozcelikkale A, Shin CS, Park K, Han B. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironmenton-chip. J Control Release 2014;194:157–67. link1

[45] Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol In Vitro 2019;54:105–13. link1

[46] Zhang W, Zhang YS, Bakht SM, Aleman J, Shin SR, Yue K, et al. Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab Chip 2016;16(9):1579–86. link1

[47] Zhang YS, Oklu R, Albadawi H. Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovasc Diagn Ther 2017;7(S3):S329–35. link1

[48] Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 2013;13(8):1489–500. link1

[49] Guo Z, Yang CT, Maritz MF, Wu H, Wilson P, Warkiani ME, et al. Validation of a vasculogenesis microfluidic model for radiobiological studies of the human microvasculature. Adv Mater Technol 2019;4(4):1800726. link1

[50] Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 2016;8(1):015007. link1

[51] Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM, Goedegebuure SP, et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 2018;18(23): 3687–702. link1

[52] Shirure VS, Lezia A, Tao A, Alonzo LF, George SC. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 2017;20(4):493–504. link1

[53] Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D, Chen JC, et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 2017;17(3):511–20. link1

[54] Wang X, Phan DTT, Sobrino A, George SC, Hughes CCW, Lee AP. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 2016;16(2):282–90. link1

[55] Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, et al. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip 2019;19(17):2822–33. link1

[56] van Engeland NCA, Pollet AMAO, den Toonder JMJ, Bouten CVC, Stassen OMJA, Sahlgren CM. A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip 2018;18(11):1607–20. link1

[57] Chung HH, Mireles M, Kwarta BJ, Gaborski TR. Use of porous membranes in tissue barrier and co-culture models. Lab Chip 2018;18(12):1671–89. link1

[58] Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 2006;71(3):185–96. link1

[59] Pauty J, Usuba R, Cheng IG, Hespel L, Takahashi H, Kato K, et al. A vascular endothelial growth factor-dependent sprouting angiogenesis assay based on an in vitro human blood vessel model for the study of anti-angiogenic drugs. EBioMedicine 2018;27:225–36. link1

[60] Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascularspecific growth factors and blood vessel formation. Nature 2000;407(6801): 242–8. link1

[61] Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018;180:117–29. link1

[62] Hoefer IE, den Adel B, Daemen MJAP. Biomechanical factors as triggers of vascular growth. Cardiovasc Res 2013;99(2):276–83. link1

[63] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773–85. link1

[64] Sasmal P, Datta P, Wu Y, Ozbolat IT. 3D bioprinting for modelling vasculature. Microphysiol Syst 2018;2:9.

[65] Ng WL, Chua CK, Shen YF. Print me an organ! Why we are not there yet. Prog Polym Sci 2019;97:101145. link1

[66] Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials 2004;25(17):3707–15. link1

[67] Hewes S, Wong AD, Searson PC. Bioprinting microvessels using an inkjet printer. Bioprinting 2017;7:14–8. link1

[68] Guillemot F, Guillotin B, Fontaine A, Ali M, Catros S, Kériquel V, et al. Laserassisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bull 2011;36(12):1015–9. link1

[69] Devillard R, Pagès E, Correa MM, Kériquel V, Rémy M, Kalisky J, et al. Cell patterning by laser-assisted bioprinting. Methods. Cell Biol. 2014;119:159–74.

[70] Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, et al. Laserassisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011;3(2): 025001. link1

[71] Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication 2015;7(4): 045011. link1

[72] Panwar A, Tan LP. Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 2016;21(6):685. link1

[73] Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016;76:321–43. link1

[74] Pati F, Jang J, Lee JW, Cho DW. Extrusion bioprinting. In: Atala A, Yoo JJ, editors. Essentials of 3D biofabrication and translation. Amsterdam: Elsevier; 2015. p. 123–52. link1

[75] Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG, et al. Writing in the granular gel medium. Sci Adv 2015;1(8):e1500655. link1

[76] Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 2015;1(9):e1500758. link1

[77] Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019;365(6452):482–7. link1

[78] Hull CW, inventor; UVP Inc., assignee. Apparatus for production of threedimensional objects by stereolithography. United States Patent 4575330. 1986 Nov 3.

[79] Raman R, Bashir R. Stereolithographic 3D bioprinting for biomedical applications. In: Atala A, Yoo JJ, editors. Essentials of 3D biofabrication and translation. Amsterdam: Elsevier; 2015. p. 89–121. link1

[80] Zhang R, Larsen NB. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip 2017;17(24): 4273–82. link1

[81] Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019;364(6439):458–64. link1

[82] Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014;35 (28):8092–102. link1

[83] Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 2014;7(3):460–72. link1

[84] Ji S, Almeida E, Guvendiren M. 3D bioprinting of complex channels within cell-laden hydrogels. Acta Biomater 2019;95:214–24. link1

[85] Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, et al. A human disease model of drug toxicity-induced pulmonary edema in a lungon-a-chip microdevice. Sci Transl Med 2012;4(159):159ra147.

[86] Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res 2018;7(6):1048–60. link1

[87] Ma L, Wu Y, Li Y, Aazmi A, Zhou H, Zhang B, et al. Current advances on 3Dbioprinted liver tissue models. Adv Healthc Mater 2020;9(24):2001517. link1

[88] Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, et al. Cell-printed 3D liver-on-achip possessing a liver microenvironment and biliary system. Biofabrication 2019;11(2):025001. link1

[89] Urmacher C. Histology of normal skin. Am J Surg Pathol 1990;14(7):671–86. link1

[90] Jusoh N, Ko J, Jeon NL. Microfluidics-based skin irritation test using in vitro 3D angiogenesis platform. APL Bioeng 2019;3(3):036101. link1

[91] Mori N, Morimoto Y, Takeuchi S. Skin integrated with perfusable vascular channels on a chip. Biomaterials 2017;116:48–56. link1

[92] Chen MB, Srigunapalan S,Wheeler AR, Simmons CA. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell–cell interactions. Lab Chip 2013;13(13):2591–8. link1

[93] Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, et al. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun 2020;11(1):175. link1

[94] Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 2015;9(5):054124. link1

[95] Petrosyan A, Cravedi P, Villani V, Angeletti A, Manrique J, Renieri A, et al. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun 2019;10:3656.

[96] Rayner SG, Phong KT, Xue J, Lih D, Shankland SJ, Kelly EJ, et al. Reconstructing the human renal vascular–tubular unit in vitro. Adv Healthc Mater 2018;7(23): 1801120. link1

[97] Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods 2019;16(3):255–62. link1

[98] Pecorino L. Molecular biology of cancer: mechanisms, targets, and therapeutics. 4th ed. Oxford: Oxford University Press; 2016. link1

[99] Siegel RL,Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70(1): 7–30. link1

[100] Doglioni G, Parik S, Fendt SM. Interactions in the (pre)metastatic niche environment support metastasis formation. Front Oncol 2019;9:219. link1

[101] Kalavska K, Kucerova L, Schmidtova S, Chovanec M, Mego M. Cancer stem cell niche and immune-active tumor microenvironment in testicular germ cell tumors. Adv Exp Med Biol 2020;1226:111–21. link1

[102] Kim JH. Interleukin-8 in the tumor immune niche: lessons from comparative oncology. Adv Exp Med Biol 2020;1240:25–33. link1

[103] Rajayi H, Tavasolian P, Rezalotfi A, Ebrahimi M. Cancer stem cells targeting; the lessons from the interaction of the immune system, the cancer stem cells and the tumor niche. Int Rev Immunol 2019;38(6):267–83. link1

[104] Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015;16(3): 225–38. link1

[105] Neelapu SS, Sharma P. Targeting the tumor niche to treat cancer. Proc Natl Acad Sci USA 2015;112(42):12907–8. link1

[106] Sottoriva A, Sloot PMA, Medema JP, Vermeulen L. Exploring cancer stem cell niche directed tumor growth. Cell Cycle 2010;9(8):1472–9. link1

[107] Portillo-Lara R, Annabi N. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. Lab Chip 2016;16(21):4063–81. link1

[108] Trujillo-de Santiago G, Flores-Garza BG, Tavares-Negrete JA, Lara-Mayorga IM, González-Gamboa I, Zhang YS, et al. The tumor-on-chip: recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials 2019;12(18):2945. link1

[109] Agarwal P, Wang H, Sun M, Xu J, Zhao S, Liu Z, et al. Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery. ACS Nano 2017;11(7):6691–702. link1

[110] Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 2013;31(2): 108–15. link1

[111] Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 2011;51:2720. link1

[112] Desoize B, Gimonet D, Jardiller JC. Cell culture as spheroids: an approach to multicellular resistance. Anticancer Res 1998;18(6A):4147–58. link1

[113] Sambale F, Lavrentieva A, Stahl F, Blume C, Stiesch M, Kasper C, et al. Three dimensional spheroid cell culture for nanoparticle safety testing. J Biotechnol 2015;205:120–9. link1

[114] Lin RZ, Chang HY. Recent advances in three-dimensionalmulticellular spheroid culture for biomedical research. Biotechnol J 2008;3(9–10):1172–84. link1

[115] Yamauchi N, Yamada O, Takahashi T, Imai K, Sato T, Ito A, et al. A threedimensional cell culture model for bovine endometrium: regeneration of a multicellular spheroid using ascorbate. Placenta 2003;24(2–3):258–69. link1

[116] Yu L, Chen MC, Cheung KC. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 2010;10(18):2424–32. link1

[117] Torisawa YS, Takagi A, Nashimoto Y, Yasukawa T, Shiku H, Matsue T. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials 2007;28(3):559–66. link1

[118] Li X, Deng Q, Zhuang T, Lu Y, Liu T, Zhao W, et al. 3D bioprinted breast tumor model for structure–activity relationship study. Bio-des Manuf 2020;3(4): 361–72.

[119] Sobrino A, Phan DTT, Datta R, Wang X, Hachey SJ, Romero-López M, et al. 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 2016;6(1):31589. link1

[120] Chung M, Ahn J, Son K, Kim S, Jeon NL. Biomimetic model of tumor microenvironment on microfluidic platform. Adv Healthc Mater 2017;6(15): 1700196. link1

[121] Mannino RG, Santiago-Miranda AN, Pradhan P, Qiu Y, Mejias JC, Neelapu SS, et al. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro. Lab Chip 2017;17(3):407–14. link1

[122] Paek J, Park SE, Lu Q, Park KT, Cho M, Oh JM, et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 2019;13(7):7627–43. link1

[123] Ozkan A, Ghousifam N, Hoopes PJ, Yankeelov TE, Rylander MN. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Biotechnol Bioeng 2019;116(5):1201–19. link1

[124] Nashimoto Y, Okada R, Hanada S, Arima Y, Nishiyama K, Miura T, et al. Vascularized cancer on a chip: the effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials 2020;229:119547. link1

[125] Rozich NS, Blair AB, Burkhart RA. Organoids: a model for precision medicine. In: Faintuch J, Faintuch S, editors. Precision medicine for investigators, practitioners and providers. New York City: Academic Press; 2020. p. 123–9. link1

[126] Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater 2019;31(50):1902042. link1

[127] Takebe T, Zhang B, Radisic M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell 2017;21(3):297–300. link1

[128] Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, et al. Publisher correction: guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 2018;36(10):1016. link1

[129] Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and diseasemodeling. Drug Discov Today 2016;21(9):1399–411. link1

[130] Lee JM, Yeong WY. Design and printing strategies in 3D bioprinting of cellhydrogels: a review. Adv Healthc Mater 2016;5(22):2856–65. link1

[131] Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 2013;101A(1):272–84. link1

[132] Ahsan AMM, Xie R, Khoda B. Heterogeneous topology design and voxel-based bio-printing. Rapid Prototyping J 2018;24(7):1142–54. link1

[133] Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019;575(7782): 330–5. link1

[134] An J, Chua CK, Mironov V. A perspective on 4D bioprinting. Int J Bioprinting. 2016;2(1):3–5. link1

[135] Ashammakhi N, Ahadian S, Zengjie F, Suthiwanich K, Lorestani F, Orive G, et al. Advances and future perspectives in 4D bioprinting. Biotechnol J 2018;13(12):1800148. link1

[136] Esch MB, Mahler GJ. Body-on-a-chip systems: design, fabrication, and applications. In: Borenstein JT, Tandon V, Tao SL, Charest JL, editors. Microfluidic cell culture systems. Amsterdam: Elsevier; 2019. p. 323–50. link1

Related Research