Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 19, Issue 12 doi: 10.1016/j.eng.2021.07.014

Tanshinone IIA Suppresses Non-Small Cell Lung Cancer Through Beclin-1-Mediated Autophagic Apoptosis

a School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
b State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
c Cardiothoracic Surgery Department, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China

# These authors contributed equally to this work.

Received: 2021-05-06 Revised: 2021-06-28 Accepted: 2020-07-06 Available online: 2021-09-09

Next Previous

Abstract

It is necessary to develop a new strategy for treatment of lung cancer since it is the main cause of cancer death. Tanshinone IIA (Tan IIA), an active ingredient of a commonly used traditional Chinese herb Salvia miltiorrhiza, provides a new direction to develop a new strategy for the treatment. It has been found that Tan IIA could inhibit lung cancer in vitro and in vivo by inducing autophagic apoptosis. Tan IIA increased apoptotic cells and the expression of cleaved caspase 3 and cleaved caspase 9, decreased B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) ratio in human non-small cell lung cancer (NSCLC) cell lines, which was promoted by an autophagy activator Rapamycin, and weaken by autophagy inhibitor 3-methyladenine (3-MA). In addition, Tan IIA induced more autophagosomes, up-regulated light chain 3β (LC-3B) I and LC-3B II conversion and less sequestosome 1 (SQSTM1/p62) expression, which cannot be weakened by the caspase 3 antagonist. Moreover, overexpression of LC-3B gene (LC3B) and downregulation of autophagic gene 5 (ATG5) further confirmed that Tan IIA induced autophagic apoptosis in NSCLC cell lines. Beclin-1 gene (BECN1) overexpression and silence attenuated the effects of Tan IIA, suggesting autophagic apoptosis that Tan IIA induced was dependent on Beclin-1. Overall, our study demonstrated a new treatment mechanism of Tan IIA and suggested that Tan IIA is a potential new anti-cancer therapeutic option.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020;70(3):145–64. link1

[ 2 ] Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al.; 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016;388(10053):1659–724. link1

[ 3 ] Liao X, Bu Y, Jia Q. Traditional Chinese medicine as supportive care for the management of liver cancer: past, present, and future. Genes Dis 2020;7 (3):370–9. link1

[ 4 ] Li Z, Zhang F, Li G. Traditional Chinese medicine and lung cancer—from theory to practice. Biomed Pharmacother 2021;137:111381. link1

[ 5 ] Smith ME, Bauer-Wu S. Traditional Chinese medicine for cancer-related symptoms. Semin Oncol Nurs 2012;28(1):64–74. link1

[ 6 ] Zhang Z, Zhao X, Gao Q, Zhao Y, Zhai L, Jia S, et al. Investigation and study on the TCM syndrome distribution of malignant tumor. World J Integr Tradit West Med 2019;14(2):261–7. Chinese. link1

[ 7 ] Yang XB, Long SQ, Deng H, Liu W, He WF, Pan ZQ, et al. Distribution characteristics of syndrome types in TCM in patients with advanced non-small cell lung cancer (NSCLC). J Liaoning Univ TCM 2013;15(3):188–90. Chinese. link1

[ 8 ] Zhu P, Li ZG, Dong CW. Progress on lung cancer with syndrome differentiation in traditional Chinese medicine. J Pract Tradit Chin Intern Med 2017;31 (3):91–3. Chinese. link1

[ 9 ] Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med 2019;8(5):1958–75. link1

[10] Zhao LN, Yang YQ, Wang WW, Li Q, Xiao H. The effects of traditional Chinese medicine combined with chemotherapy on immune function and quality of life in patients with non-small cell lung cancer: a protocol for systematic review and meta-analysis. Medicine 2020;99(45):e22859. link1

[11] Lee YW, Chen TL, Shih YR, Tsai CL, Chang CC, Liang HH, et al. Adjunctive traditional Chinese medicine therapy improves survival in patients with advanced breast cancer: a population-based study. Cancer 2014;120 (9):1338–44. link1

[12] Wan AKS, Leung SWS, Zhu DY, Man RYK. Vascular effects of different lipophilic components of ‘‘Danshen”, a traditional Chinese medicine, in the isolated porcine coronary artery. J Nat Prod 2008;71(11):1825–8. link1

[13] Ren J, Fu L, Nile SH, Zhang J, Kai GY. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol 2019;10:753. link1

[14] Liao S, Han L, Zheng X, Wang X, Zhang P, Wu J, et al. Tanshinol borneol ester, a novel synthetic small molecule angiogenesis stimulator inspired by botanical formulations for angina pectoris. Brit J Pharmacol 2019;176 (17):3143–60. link1

[15] Gao H, Sun W, Zhao J, Wu X, Lu JJ, Chen X, et al. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci Rep 2016;6:33720. link1

[16] Wang LQ, Hua DF, Li XM, Li J, Guan Y. Salvianolic acid-A induces apoptosis, mitochondrial membrane potential loss and DNA damage in small cell lung cancer cell lines. Trop J Pharm Res 2015;14(8):1399–404. link1

[17] Tang XL, Yan L, Zhu L, Jiao DM, Chen J, Chen QY. Salvianolic acid A reverses cisplatin resistance in lung cancer a549 cells by targeting c-met and attenuating Akt/mTOR pathway. J Pharmacol Sci 2017;135(1):1–7. link1

[18] Guan Y, Zhu JP, Shen J, Jia YL, Jin YC, Dong XW, et al. Salvianolic acid B improves airway hyperresponsiveness by inhibiting MUC5AC overproduction associated with Erk1/2/P38 signaling. Eur J Pharmacol 2018;824:30–9. link1

[19] Ye YT, Zhong W, Sun P, Wang D, Wang C, Hu LM, et al. Apoptosis induced by the methanol extract of Salvia miltiorrhiza Bunge in non-small cell lung cancer through PTEN-mediated inhibition of PI3K/Akt pathway. J Ethnopharmacol 2017;200:107–16. link1

[20] Guo R, Li L, Su J, Li S, Duncan SE, Liu ZH, et al. Pharmacological activity and mechanism of Tanshinone IIA in related diseases. Drug Des Dev Ther 2020;14:4735–48. link1

[21] Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lu JX, et al. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci 2012;13 (10):13621–66. link1

[22] Zhang Y, Geng Y, He JT, Wu D, Zhang T, Xue L, et al. Tanshinone IIA induces apoptosis and autophagy in acute monocytic leukemia via downregulation of PI3K/Akt pathway. Am J Transl Res 2019;11(5):2995–3006. link1

[23] Wang X, Shao M, Wang Y. GW29-e0760 Tanshinone IIA protects H9c2 cells from reactive oxygen species through inhabiting excessive autophagy via activation of PI3K/Akt/mTOR signaling pathway. J Am Coll Cardiol 2018;72 (16):C24. link1

[24] Ding L, Wang S, Qu X, Wang J. Tanshinone IIA sensitizes oral squamous cell carcinoma to radiation due to an enhanced autophagy. Environ Toxicol Pharmacol 2016;46:264–9. link1

[25] Onorati AV, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Cancer 2018;124(16):3307–18. link1

[26] White E, Mehnert JM, Chan CS. Autophagy, metabolism, and cancer. Clin Cancer Res 2015;21(22):5037–46. link1

[27] Mulcahy Levy JM, Thorburn A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 2020;27(3):843–57. link1

[28] Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer 2017;17(9):528–42. link1

[29] Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 2019;9(9):1167–81. link1

[30] Qiu Y, Li C, Wang Q, Zeng X, Ji P. Tanshinone IIA induces cell death via Beclin-1- dependent autophagy in oral squamous cell carcinoma SCC-9 cell line. Cancer Med 2018;7(2):397–407. link1

[31] Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res 2014;28(3):458–64. link1

[32] Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health 2019;9(4):217–22. link1

[33] Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? Cancer Commun 2019;39 (1):1–12. link1

[34] Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ 2019;26:605–16. link1

[35] Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008;9:1004–10. link1

[36] Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007;8:741–52. link1

[37] Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 2009;16:3–11. link1

[38] Longo DL, Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med 2020;383:1564–76. link1

[39] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306(5698):990–5. link1

[40] Shen S, Kepp O, Michaud M, Martins I, Minoux H, Métivier D, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 2011;30:4544–56. link1

[41] Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 2012;19:107–20. link1

[42] Luciani MF, Giusti C, Harms B, Oshima Y, Kikuchi H, Kubohara Y, et al. Atg1 allows second-signaled autophagic cell death in Dictyostelium. Autophagy 2011;7(5):501–8. link1

[43] Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 2008;445:29–76. link1

[44] Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci 2019;134:116–37. link1

[45] Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, et al. Chloroquine-inducible Par-4 secretion is essential for tumor cell apoptosis and inhibition of metastasis. Cell Rep 2017;18(2):508–19. link1

[46] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70. link1

[47] Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020;581:100–5. link1

[48] Sun M, Hu K, Yang X, Chen Q, Liu Y, Zhou T, et al. Effect and metabolism of high-dose Danshen and Chuanxiong on tumor invasive and metastasis in Lewis lung cancer mouse. World J Integr Tradit West Med 2018;13:4. Chinese. link1

[49] Ding G, Song MZ, Yu EX. Study on the mechanism of Danshen, Chishao affecting walker 256 liver metastasis in experimental rats. Chin Oncol 2001;11 (4):364–6. Chinese. link1

[50] Cai W, Xu G, Hu Y, Gu X, Yan J, Qin D, et al. Long-term results of combination of radiation with destagnation in the treatment of nasopharyngeal carcinoma (NPC)—a prospective randomized trial on 188 cases. Chin J Radiat Oncol 1992;1(1):8–10. Chinese. link1

[51] Wang HZ, Liang XY, Leng X, An J, Wu DL, Qiu SJ. The effect of blood-activating and stasis-removing Chinese medicine on the changes of white matter microstructure of patients with nasopharyngeal carcinoma after radiation therapy: an DTI-TBSS study. J Clin Radiol 2020;39(7):1273–7. Chinese. link1

[52] Zang W, Bian H, Huang X, Yin G, Zhang C, Han LI, et al. Traditional Chinese medicine (TCM) Astragalus membranaceus and Curcuma wenyujin promote vascular normalization in tumor-derived endothelial cells of human hepatocellular carcinoma. Anticancer Res 2019;39(6):2739–47. link1

[53] Wang WQ, Liu L, Sun HC, Fu YL, Xu HX, Chai ZT, et al. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization. J Hematol Oncol 2012;5:69. link1

[54] Zhang Y, Tie MH, Bi F, Wang K. Tanshinone II improves distribution and antitumor efficacy of pegylated liposomal doxorubicin via normalizing the structure and function of tumor vasculature in Hepa1-6 hepatoma mice model. J Tradit Chin Med 2018;38(6):815–22. link1

[55] Yu L, Alva A, Su H, Dutt P, Freundt E,Welsh S, et al. Regulation of an ATG7-Beclin 1 program of autophagic cell death by caspase-8. Science 2004;304(5676):1500–2. link1

[56] Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011;18:571–80. link1

[57] Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005;122 (6):927–39. link1

[58] Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol 2019;1206:109–26. link1

[59] Li P, Shi M, Maique J, Shaffer J, Yan S, Moe OW, et al. Beclin 1/Bcl-2 complexdependent autophagy activity modulates renal susceptibility to ischemiareperfusion injury and mediates renoprotection by klotho. Am J Physiol Renal Physiol 2020;318(3):F772–92. link1

[60] Toton E, Lisiak N, Sawicka P, Rybczynska M. Beclin-1 and its role as a target for anticancer therapy. J Physiol Pharmacol 2014;65(4):459–67. link1

[61] Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007;9:1142–51. link1

Related Research