Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 8, Issue 1 doi: 10.1016/j.eng.2021.07.016

Joint Modulations of Electromagnetic Waves and Digital Signals on A Single Metasurface Platform to Reach Programmable Wireless Communications

a The State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
b National Mobile Communications Research Lab, Southeast University, Nanjing 210096, China
c Institute of Radio Frequency Engineering and Electronics (IHE), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany

Received: 2020-12-31 Revised: 2021-07-12 Accepted: 2021-07-18 Available online: 2021-09-15

Next Previous

Abstract

In current wireless communication and electronic systems, digital signals and electromagnetic (EM) radiation are processed by different modules. Here, we propose a mechanism to fuse the modulation of digital signals and the manipulation of EM radiation on a single programmable metasurface. The programmable metasurface consists of massive subwavelength-scale digital coding elements. A set of digital states of all elements forms simultaneous digital information roles for modulation and the wave-control sequence code of the programmable metasurface. By designing digital coding sequences in the spatial and temporal domains, the digital information and far-field patterns of the programmable metasurface can be programmed simultaneously and instantly in desired ways. For the experimental demonstration of the mechanism, we present a programmable wireless communication system. The same system can realize transmissions of digital information in single-channel modes with beam-steerable capability and multichannel modes with multiple independent information. The measured results show the excellent performance of the programmable system. This work provides excellent prospects for applications in fifth- or sixth-generation wireless communications and modern intelligent platforms for unmanned aircrafts and vehicles.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Smith DR, Schultz S, Markos P, Soukoulis CM. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 2002;65(19):195104. link1

[ 2 ] Zhang S, Fan W, Panoiu NC, Malloy KJ, Osgood RM, Brueck SR. Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 2005;95(13):137404. link1

[ 3 ] Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314(5801):977–80. link1

[ 4 ] Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 2008;7(1):31–7. link1

[ 5 ] Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010;9(5):387–96. link1

[ 6 ] Luo Y, Fernandez-Dominguez AI, Wiener A, Maier SA, Pendry JB. Surface plasmons and nonlocality: a simple model. Phys Rev Lett 2013;111(9):093901. link1

[ 7 ] Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004;305(5685):788–92. link1

[ 8 ] Cai W, Chettiar UK, Kildishev AV, Shalaev VM. Optical cloaking with metamaterials. Nat Photon 2007;1:224–7. link1

[ 9 ] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334(6054):333–7. link1

[10] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science 2013;339(6125):1232009. link1

[11] Kim M, Wong AMH, Eleftheriades GV. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys Rev X 2014;4(4):041042. link1

[12] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13(2): 139–50. link1

[13] Wan X, Zhang L, Jia SL, Yin JY, Cui TJ. Horn antenna with reconfigurable beamrefraction and polarization based on anisotropic huygens metasurface. IEEE Trans Antennas Propag 2017;65(9):4427–34. link1

[14] Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag M 2012;54(2):10–35. link1

[15] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012;11(5): 426–31. link1

[16] Martini E, Mencagli M, Gonzalez-Ovejero D, Maci S. Flat optics for surface waves. IEEE Trans Antennas Propag 2016;64(1):155–66. link1

[17] Wan X, Chen TY, Zhang Q, Yin JY, Tao Z, Zhang L, et al. Manipulations of dual beams with dual polarizations by full-tensor metasurfaces. Adv Opt Mater 2016;4(10):1567–72. link1

[18] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014;3(10):e218. link1

[19] Cui TJ, Liu S, Zhang L. Information metamaterials and metasurfaces. J Mater Chem C 2017;5(15):3644–68. link1

[20] Liu S, Cui TJ. Concepts, working principles, and applications of coding and programmable metamaterials. Adv Opt Mater 2017;5(22):1700624. link1

[21] Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al. Space-time-coding digital metasurfaces. Nat Commun 2018;9(1):4334. link1

[22] Li L, Cui TJ. Information metamaterials-from effective media to real-time information processing systems. Nanophotonics 2019;8(5):703–24. link1

[23] Wan X, Qi MQ, Chen TY, Cui TJ. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep 2016;6(1):20663. link1

[24] Yang H, Cao X, Yang F, Gao J, Xu S, Li M, et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 2016;6(1):35692. link1

[25] Wan X, Chen TY, Chen XQ, Zhang L, Cui TJ. Beam forming of leaky waves at fixed frequency using binary programmable metasurface. IEEE Trans Antennas Propag 2018;66(9):4942–7. link1

[26] Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8(1):197. link1

[27] Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun 2019;10(1):1082. link1

[28] Luo Z, Cheng Y, Cao K, Qin Y, Wang H. Microwave computational imaging in frequency domain with reprogrammable metasurface. J Electron Imag 2018;27(6):063019. link1

[29] Han J, Li L, Tian S, Liu G, Liu H, Shi Y. Millimeter-wave imaging using 1-bit programmable metasurface: simulation model, design, and experiment. IEEE J Em Sel Top C 2020;10(1):52–61. link1

[30] Liu GY, Li L, Han JQ, Liu HX, Gao XH, Shi Y, et al. Frequency-domain and spatial-domain reconfigurable metasurface. ACS Appl Mater Interfaces 2020;12(20):23554–64. link1

[31] Rusek F, Persson D, Lau BK, Larsson EG, Marzetta TL, Edfors O, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag 2013;30(1):40–60. link1

[32] Larsson EG, Edfors O, Tufvesson F, Marzetta TL. Massive MIMO for next generation wireless systems. IEEE Commun Mag 2014;52(2):186–95. link1

[33] Swindlehurst AL, Ayanoglu E, Heydari P, Capolino F. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 2014;52 (9):56–62. link1

[34] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Sur Tut 2016;18(3):1617–55. link1

[35] Ahmed I, Khammari H, Shahid A, Musa A, Kim KS, De Poorter E, et al. A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives. IEEE Commun Sur Tut 2018;20(4):3060–97. link1

[36] Heath RW, Gonzalez-Prelcic N, Rangan S, Roh W, Sayeed AM. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process 2016;10(3):436–53. link1

[37] Liang Le, Xu W, Dong X. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wire Commun Lett 2014;3(6):653–6. link1

[38] Venkateswaran V, Pivit F, Guan L. Hybrid RF and digital beamformer for cellular networks: algorithms, microwave architectures, and measurements. IEEE Trans Micro Theory Tech 2016;64(7):2226–43. link1

[39] Molisch AF, Ratnam VV, Han S, Li Z, Nguyen SLH, Li L, et al. Hybrid beamforming for massive MIMO: a survey. IEEE Commun Mag 2017;55(9):134–41. link1

[40] Sun L, Qin Y, Zhuang Z, Chen R, Zhang Y, Lu J, et al. A robust secure hybrid analog and digital receive beamforming scheme for efficient interference reduction. IEEE Access 2019;7:22227–34. link1

[41] Zhao J, Yang X, Dai JY, Cheng Q, Li X, Qi NH, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Nat Sci Rev 2019;6:231–8. link1

[42] Dai JY, Tang WK, Zhao J, Li X, Cheng Q, Ke JC, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface. Adv Mater Tech 2019;4(7):1900044. link1

[43] Dai JY, Zhao J, Cheng Q, Cui TJ. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl 2018;7(1):90–9. link1

[44] Tang W, Dai J, Chen M, Li X, Cheng Q, Jin S, et al. The future of wireless? Electron Lett 2019;55(7):360–1. link1

[45] Tang W, Li X, Dai JY, Jin S, Zeng Y, Cheng Q, et al. Wireless communications with programmable metasurface: transceiver design and experimental results. China Commun 2019;16(5):46–61. link1

[46] Tang W, Chen MZ, Chen X, Dai JY, Han Y, Renzo MD, et al. Wireless communications with reconfigurable intelligent surface: path loss, modeling and experimental measurement. 2019. arXiv:1911.05326.

[47] Cui TJ, Liu S, Bai GD, Ma Q. Direct transmission of digital message via programmable coding metasurface. Research 2019;2019:1–12. link1

[48] Tang WK, Dai JY, Chen MZ, Wang KK, Li X, Zhao X, et al. MIMO transmission through reconfigurable intelligent surface: system desing, analysis, and implementation. 2019. arXiv:1912.09955.

[49] Dai JY, Tang W, Yang LX, Li X, Chen MZ, Ke JC, et al. Realization of multimodulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Trans Antennas Propag 2020;68(3):1618–27. link1

[50] Hu S, Rusek F, Edfors O. Beyond massive MIMO: the potential of data transmission with large intelligent surfaces. IEEE Trans Signal Proc 2018;66(10): 2746–58. link1

[51] Hu S, Rusek F, Edfors O. Beyond massive MIMO: the potential of positioning with large intelligent surfaces. IEEE Trans Signal Proc 2018;66(7):1761–74. link1

[52] Wu Q, Zhang R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wire Commun 2019;18(11): 5394–409. link1

[53] Wu Q, Zhang R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag 2020;58(1): 106–12. link1

[54] Renzo MD, Zappone A, Debbah M, Alouini MS, Yuen C, de Rosny J, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and road ahead. IEEE J Sel Areas Commun 2020;38(11):2450–525. link1

[55] Abeywickrama S, Zhang R, Yuen C. Intelligent reflecting surface: practical phase shift model and beamforming optimization. In: Proceedings of 2020 IEEE International Conference on Communications; 2020 Jun 7–11; Dublin, Ireland. New York: IEEE; 2020. p. 1–6. link1

[56] Huang C, Hu S, Alexandropoulos GC, Zappone A, Yuen C, Zhang R, et al. Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. IEEE Wirel Commun 2020;27(5):118–25. link1

[57] Huang C, Zappone A, Alexandropoulos GC, Debbah M, Yuen C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun 2019;18(8):4157–70. link1

[58] Renzo MD, Debbah M, Phan-Huy DT, Zappone A, Alouini MS, Yuen C, et al. Smart radio environments empowered by AI reconfigurable meta-surfaces: an idea whose time has come. EURASIP J Wirel Comm 2019;129. link1

[59] Wan X, Zhang Q, Chen TY, Zhang L, Xu W, Huang H, et al. Multichannel direct transmissions of near-field information. Light Sci Appl 2019;8(1):60–7. link1

Related Research