Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 22, Issue 3 doi: 10.1016/j.eng.2021.07.032

Structural and Functional NIR-II Fluorescence Bioimaging in Urinary System via Clinically Approved Dye Methylene Blue

a Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
b Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
c Department of Urology, University of Leipzig, Leipzig 04103, Germany
d State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China

Received: 2021-02-10 Revised: 2021-07-15 Accepted: 2021-07-15 Available online: 2022-04-25

Next Previous

Abstract

Accurate structural and functional imaging is vital for the diagnosis and prognosis of urinary system diseases. Fluorescence bioimaging in the second near-infrared spectral region (NIR-II, 1000–1700 nm) has shown advantages of higher spatial resolution, deeper penetration, and finer signal-to-background ratio (SBR) compared to the conventional fluorescence imaging methods but limited to its clinical inapplicability. Herein, we first report in vivo NIR-II fluorescence imaging of the urinary system enabled by a clinically approved and renal excretable dye methylene blue (MB), which cannot only achieve clear invasive/non-invasive urography but also noninvasively detect renal function efficiently. These results demonstrate that MB assisted NIR-II fluorescence imaging holds a great promise for structural and functional imaging of the urinary system both clinically and preclinically.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Essman SC. Contrast cystography. Clin Tech Small Anim Pract 2005;20 (1):46–51. link1

[ 2 ] McDonald RJ, McDonald JS, Carter RE, Hartman RP, Katzberg RW, Kallmes DF, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 2014;273(3):714–25. link1

[ 3 ] Bjurlin MA, Turkbey B, Rosenkrantz AB, Gaur S, Choyke PL, Taneja SS. Imaging the high-risk prostate cancer patient: current and future approaches to staging. Urology 2018;116:3–12. link1

[ 4 ] Moosavi B, Shabana WM, El-Khodary M, van der Pol CB, Flood TA, McInnes MDF, et al. Intracellular lipid in clear cell renal cell carcinoma tumor thrombus and metastases detected by chemical shift (in and opposed phase) MRI: radiologic-pathologic correlation. Acta Radiol 2016;57(2):241–8. link1

[ 5 ] Morris MJ, Autio KA, Basch EM, Danila DC, Larson S, Scher HI. Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable? Semin Oncol 2013;40(3):375–92. link1

[ 6 ] Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014;371 (1):58–66. link1

[ 7 ] Taylor AT, Lipowska M, Cai H. 99mTc(CO)3(NTA) and 131I-OIH: comparable plasma clearances in patients with chronic kidney disease. J Nucl Med 2013;54 (4):578–84. link1

[ 8 ] Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C. Functional MRI of the kidney. Abdom Imaging 2003;28(2):164–75. link1

[ 9 ] Taylor AT. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med 2014;55(4):608–15. link1

[10] Cheng D, Peng J, Lv Y, Su D, Liu D, Chen M, et al. De novo design of chemical stability near-infrared molecular probes for high-fidelity hepatotoxicity evaluation in vivo. J Am Chem Soc 2019;141(15):6352–61. link1

[11] Feng Z, Yu X, Jiang M, Zhu L, Zhang Y, Yang W, et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 2019;9(19):5706–19. link1

[12] Sun C, Li B, Zhao M, Wang S, Lei Z, Lu L, et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J Am Chem Soc 2019;141(49):19221–5. link1

[13] Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, et al. Syntheticmolecule/protein hybrid probe with fluorogenic switch for live-cell imaging of DNA methylation. J Am Chem Soc 2018;140(5):1686–90. link1

[14] Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 2018;9(19):4370–80. link1

[15] Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater 2018;30(34):e1802546. link1

[16] Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 2018;115(17):4465–70. link1

[17] Zebibula A, Alifu N, Xia L, Sun C, Yu X, Xue D, et al. Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Adv Funct Mater 2018;28(9):1703451. link1

[18] Del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F. In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophotonics 2016;9 (10):1059–67. link1

[19] Zhang M, Yue J, Cui R, Ma Z, Wan H, Wang F, et al. Bright quantum dots emitting at 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci USA 2018;115(26):6590–5. link1

[20] Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 2012;51(39):9818–21. link1

[21] Diao S, Hong G, Robinson JT, Jiao L, Antaris AL, Wu JZ, et al. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 2012;134(41):16971–4. link1

[22] Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 2012;134 (25):10664–9. link1

[23] Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 2014;8(9):723–30. link1

[24] Li Y, Cai Z, Liu S, Zhang H, Wong STH, Lam JWY, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun 2020;11(1):1255. link1

[25] Zheng Z, Li D, Liu Z, Peng HQ, Sung HHY, Kwok RTK, et al. Aggregation-induced nonlinear optical effects of AIEgen nanocrystals for ultradeep in vivo bioimaging. Adv Mater 2019;31(44):e1904799. link1

[26] Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, et al. Single-molecular nearinfrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy. ACS Nano 2018;12(11):11282–93. link1

[27] Qi J, Sun C, Zebibula A, Zhang H, Kwok RTK, Zhao X, et al. Real-time and highresolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv Mater 2018;30(12):e1706856. link1

[28] Wang R, Li X, Zhou L, Zhang F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm shortwavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed Engl 2014;53(45):12086–90. link1

[29] Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun 2018;9(1):2898. link1

[30] Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, et al. Rare-earthdoped biological composites as in vivo shortwave infrared reporters. Nat Commun 2013;4(1):2199. link1

[31] Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 2016;59(18):8149–67. link1

[32] Wang Y, Hu R, Lin G, Roy I, Yong KT. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interfaces 2013;5(8):2786–99. link1

[33] Yu X, Feng Z, Cai Z, Jiang M, Xue D, Zhu L, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy. J Mater Chem B 2019;7(42):6623–9. link1

[34] Winer JH, Choi HS, Gibbs-Strauss SL, Ashitate Y, Colson YL, Frangioni JV. Intraoperative localization of insulinoma and normal pancreas using invisible near-infrared fluorescent light. Ann Surg Oncol 2010;17(4):1094–100. link1

[35] Verbeek FPR, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J Urol 2013;190(2):574–9. link1

[36] Tummers QRJG, Verbeek FPR, Schaafsma BE, Boonstra MC, van der Vorst JR, Liefers GJ, et al. Real-time intraoperative detection of breast cancer using nearinfrared fluorescence imaging and methylene blue. Eur J Surg Oncol 2014;40 (7):850–8. link1

[37] Matsui A, Tanaka E, Choi HS, Kianzad V, Gioux S, Lomnes SJ, et al. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery 2010;148(1):78–86. link1

[38] Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett 2010;1(16):2445–50. link1

[39] Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A small-molecule dye for NIR-II imaging. Nat Mater 2016;15(2):235–42. link1

[40] Penna FJ, Caldamone A, Koyle MA. Coming full circle with vesicoureteral reflux: from Hutch to bladder and bowel dysfunction. J Pediatr Urol 2017;13 (2):189–91. link1

[41] Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R, et al. Recurrent CT, cumulative radiation exposure, and associated radiationinduced cancer risks from CT of adults. Radiology 2009;251(1):175–84. link1

[42] DiSanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs I: methylene blue—whole blood, urine, and tissue assays. J Pharm Sci 1972;61(4): 598–602. link1

[43] DiSanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs II: methylene blue—absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci 1972;61(7):1086–90. link1

[44] Datta S, Wheatstone S, Challacombe B. The acute management of iatrogenic urological injuries; strategies and mind-set for the urologist attending an unfamiliar operating theatre. BJU Int 2013;112(5):540–2. link1

[45] Brandes S, Coburn M, Armenakas N, McAninch J. Diagnosis and management of ureteric injury: an evidence-based analysis. BJU Int 2004;94(3):277–89. link1

[46] Delacroix Jr SE, Winters JC. Urinary tract injuries: recognition and management. Clin Colon Rectal Surg 2010;23(3):221. link1

[47] Yu M, Liu J, Ning X, Zheng J. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew Chem Int Ed Engl 2015;54(51):15434–8. link1

[48] Yu M, Zhou J, Du B, Ning X, Authement C, Gandee L, et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew Chem Int Ed Engl 2016;55(8):2787–91. link1

[49] Huang J, Lyu Y, Li J, Cheng P, Jiang Y, Pu K. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury. Angew Chem Int Ed Engl 2019;58(49):17796–804. link1

[50] Huang J, Xie C, Zhang X, Jiang Y, Li J, Fan Q, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew Chem Int Ed Engl 2019;58(42):15120–7. link1

[51] Huang J, Weinfurter S, Daniele C, Perciaccante R, Federica R, Della Ciana L, et al. Zwitterionic near infrared fluorescent agents for noninvasive real-time transcutaneous assessment of kidney function. Chem Sci 2017;8(4):2652–60. link1

Related Research