Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 12 doi: 10.1016/j.eng.2021.08.010

An Outlook on Implantable Biosensors for Personalized Medicine

a I3B's Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
b ICVS/3B’s–PT Government-Associated Laboratory, Braga, Guimarães, Portugal

Received: 2021-03-26 Revised: 2021-05-25 Accepted: 2021-08-03 Available online: 2021-09-15

Next Previous

Figures

Fig. 1

References

[ 1 ] Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skinintegrated wearable systems and implantable biosensors: a comprehensive review. Biosensors 2020;10(7):79. link1

[ 2 ] Daniel KD, Kim GY, Vassiliou CC, Galindo M, Guimaraes AR, Weissleder R, et al. Implantable diagnostic device for cancer monitoring. Biosens Bioelectron 2009;24(11):3252–7. link1

[ 3 ] Gray M, Meehan J, Ward C, Langdon SP, Kunkler IH, Murray A, et al. Implantable biosensors and their contribution to the future of precision medicine. Vet J 2018;239:21–9. link1

[ 4 ] Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 1962;102(1):29–45. link1

[ 5 ] Guilbault GG, Montalvo JG. A urea-specific enzyme electrode. J Am Chem Soc 1969;91(8):2164–5. link1

[ 6 ] Akhtar N, Metkar SK, Girigoswami A, Girigoswami K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C 2017;78: 960–8. link1

[ 7 ] Barbosa AI, Rebelo R, Reis RL, Bhattacharya M, Correlo VM. Current nanotechnology advances in diagnostic biosensors. Med Devices Sens 2021;4 (1):e10156. link1

[ 8 ] Rebelo R, Barbosa AI, Caballero D, Kwon IK, Oliveira JM, Kundu SC, et al. 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens Bioelectron 2019;130:20–39. link1

[ 9 ] Palchetti I, Mascini M. Biosensor technology: a brief history. In: Malcovati P, Baschirotto A, D’Amico A, Natale C, editors. Sensors and microsystems. Lecture notes in electrical engineering. Dordrecht: Springer; 2010. p. 15–23. link1

[10] Patel S, Nanda R, Sahoo S, Mohapatra E. Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem Res Int 2016;2016:1–12. link1

[11] Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 2013;12(10):938–44. link1

[12] McConnell GC, Rees HD, Levey AI, Gutekunst CA, Gross RE, Bellamkonda RV. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng 2009;6(5):056003. link1

[13] Mazzotta A, Carlotti M, Mattoli V. Conformable on-skin devices for thermoelectro-tactile stimulation: materials, design, and fabrication. Mater Adv 2021;2(6):1787–820. link1

[14] Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019;124–125:96–114. link1

[15] Bridges AW, García AJ. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol 2008;2(6):984–94. link1

[16] Xu J, Lee H. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors 2020;8(3):66. link1

[17] Zhang D, Chen Qi, Shi C, Chen M, Ma K, Wan J, et al. Dealing with the foreignbody response to implanted biomaterials: strategies and applications of new materials. Adv Funct Mater 2021;31(6):2007226. link1

[18] Yu B, Wang C, Ju YM, West L, Harmon J, Moussy Y, et al. Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosens Bioelectron 2008;23(8):1278–84. link1

[19] Wang Y, Papadimitrakopoulos F, Burgess DJ. Polymeric ‘‘smart” coatings to prevent foreign body response to implantable biosensors. J Control Release 2013;169(3):341–7. link1

[20] Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent advances in antiinflammatory material design. Adv Healthc Mater 2021;10(1):2001373. link1

[21] Lin PH, Li BR. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020;145(4):1110–20. link1

[22] Pawlowska NM, Fritzsche H, Blaszykowski C, Sheikh S, Vezvaie M, Thompson M. Probing the hydration of ultrathin antifouling organosilane adlayers using neutron reflectometry. Langmuir 2014;30(5):1199–203. link1

[23] Srivastava R, Jayant RD, Chaudhary A, McShane MJ. ‘‘Smart tattoo” glucose biosensors and effect of coencapsulated anti-inflammatory agents. J Diabetes Sci Technol 2011;5(1):76–85. link1

[24] Li Y, Chen W, Lu L. Wearable and biodegradable sensors for human health monitoring. ACS Appl Bio Mater 2021;4(1):122–39. link1

[25] Tang L, Thevenot P, Hu W. Surface chemistry influences implant biocompatibility. Curr Top Med Chem 2008;8(4):270–80. link1

[26] Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm 2018;544 (2):319–34. link1

[27] Siontorou CG, Nikoleli GP, Nikolelis DP, Karapetis S, Tzamtzis N, Bratakou S. Pointof-care and implantable biosensors in cancer research and diagnosis. In: Chandra P, Tan YN, Singh SP, editors. Next generation point-of-care biomedical sensors technologies for cancer diagnosis. Singapore: Springer Singapore; 2017. p. 115–32. link1

[28] Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M, et al. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Analyt Chem 2020;122:115701. link1

[29] Soleymani L, Li F. Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS Sens 2017;2(4):458–67. link1

[30] Dahlin AB. Size matters: problems and advantages associated with highly miniaturized sensors. Sensors 2012;12(3):3018–36. link1

[31] Baj-Rossi C, Kilinc EG, Ghoreishizadeh SS, Casarino D, Jost TR, Dehollain C, et al. Full fabrication and packaging of an implantable multi-panel device for monitoring of metabolites in small animals. IEEE Trans Biomed Circuits Syst 2014;8(5):636–47. link1

[32] Gonzalez-Solino C, Lorenzo MD. Enzymatic fuel cells: towards self-powered implantable and wearable diagnostics. Biosensors 2018;8(1):11. link1

[33] Davis F, Higson SPJ. Biofuel cells—recent advances and applications. Biosens Bioelectron 2007;22(7):1224–35. link1

[34] Li S. Bio-compatible materials for advanced energy storage devices towards biomedical implantation [disseartation]. Wollongong: University of Wollongong; 2014. link1

[35] Amar A, Kouki A, Cao H. Power approaches for implantable medical devices. Sensors 2015;15(11):28889–914. link1

[36] Wu T, Redoute JM, Yuce MR. A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT healthcare applications. IEEE Access 2018;6:35801–8. link1

[37] Jiang H, Zhang J, Lan D, Chao KK, Liou S, Shahnasser H, et al. A low-frequency versatile wireless power transfer technology for biomedical implants. IEEE Trans Biomed Circuits Syst 2013;7(4):526–35. link1

[38] Lee JH, Seo DW. Development of ECG monitoring system and implantable device with wireless charging. Micromachines 2019;10(1):38. link1

[39] Asgari SS, Bonde P. Implantable physiologic controller for left ventricular assist devices with telemetry capability. J Thorac Cardiovasc Surg 2014;147(1):192–202. link1

[40] Ryou M, Nemiroski A, Azagury D, Shaikh SN, Ryan MB, Westervelt RM, et al. An implantable wireless biosensor for the immediate detection of upper GI bleeding: a new fluorescein-based tool for diagnosis and surveillance (with video). Gastrointest Endosc 2011;74(1):189–94.e1. link1

[41] Lee JH. Miniaturized human insertable cardiac monitoring system with wireless power transmission technique. J Sens 2016;2016:1–7. link1

[42] Wongkaew N, Simsek M, Griesche C, Baeumner AJ. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 2019;119(1):120–94. link1

[43] Ramos T, Moroni L. Tissue engineering and regenerative medicine 2019: the role of biofabrication—a year in review. Tissue Eng Part C Methods 2020;26 (2):91–106. link1

[44] Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, et al. Microfluidics integrated biosensors: a leading technology towards lab-on-achip and sensing applications. Sensors 2015;15(12):30011–31. link1

[45] Fiedler BA, Ferguson M. Overview of medical device clinical trials. In: Fiedler BA, editor. Managing medical devices within a regulatory framework. Amsterdam: Elsevier; 2017. p. 17–32. link1

Related Research