Engineering >> 2022, Volume 11, Issue 4 doi: 10.1016/j.eng.2021.08.025
High Performance Electrically Small Huygens Rectennas Enable Wirelessly Powered Internet of Things Sensing Applications: A Review
Global Big Data Technologies Centre, School of Electrical and Data Engineering, University of Technology Sydney, Ultimo NSW 2007, Australia
Next Previous
Abstract
Far-field wireless power transfer (WPT) is a major breakthrough technology that will enable the many anticipated ubiquitous Internet of Things (IoT) applications associated with fifth generation (5G), sixth generation (6G), and beyond wireless ecosystems. Rectennas, which are the combination of rectifying circuits and antennas, are the most critical components in far-field WPT systems. However, compact application devices require even smaller integrated rectennas that simultaneously have large electromagnetic wave capture capabilities, high alternating current (AC)-to-direct current (DC) (AC-to-DC) conversion efficiencies, and facilitate a multifunctional wireless performance. This paper reviews various rectenna miniaturization techniques such as meandered planar inverted-F antenna (PIFA) rectennas; miniaturized monopole- and dipole-based rectennas; fractal loop and patch rectennas; dielectric-loaded rectennas; and electrically small near-field resonant parasitic rectennas. Their performance characteristics are summarized and then compared with our previously developed electrically small Huygens rectennas that are proven to be more suitable for IoT applications. They have been tailored, for example, to achieve battery-free IoT sensors as is demonstrated in this paper. Battery-free, wirelessly powered devices are smaller and lighter in weight in comparison to battery-powered devices. Moreover, they are environmentally friendly and, hence, have a significant societal benefit. A series of high-performance electrically small Huygens rectennas are presented including Huygens linearly-polarized (HLP) and circularly-polarized (HCP) rectennas; wirelessly powered IoT sensors based on these designs; and a dual-functional HLP rectenna and antenna system. Finally, two linear uniform HLP rectenna array systems are considered for significantly larger wireless power capture. Example arrays illustrate how they can be integrated advantageously with DC or radio frequency (RF) power-combining schemes for practical IoT applications.
Keywords
Antenna ; Array ; Cardioid pattern ; Electrically small antenna ; Huygens dipole antenna ; Internet of Things (IoT) ; Rectenna ; Rectifier circuit ; Wireless power transfer
Figures
References
[ 1 ] Tesla N, inventor. Apparatus for transmitting electrical energy. United States patent US 1119732. 1914 Dec 1.
[ 2 ] Tesla N. The true wireless. Electr Exp 1919;2(5):1–13. link1
[ 3 ] Wheeler LP. II—Tesla’s contribution to high frequency. Electr Eng 1943;62(8): 355–7. link1
[ 4 ] Brown WC. The history of power transmission by radio waves. IEEE Trans Microw Theory Tech 1984;32(9):1230–42. link1
[ 5 ] Matsumoto H. Research on solar power satellites and microwave power transmission in Japan. IEEE Microw Mag 2002;3(4):36–45. link1
[ 6 ] Dickinson RM. Power in the sky: requirements for microwave wireless power beamers for powering high-altitude platforms. IEEE Microw Mag 2013;14(2): 36–47. link1
[ 7 ] Strassner B, Chang K. Microwave power transmission: historical milestones and system components. Proc IEEE 2013;101(6):1379–96. link1
[ 8 ] Massa A, Oliveri G, Viani F, Rocca P. Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions. Proc IEEE 2013;101(6):1464–81. link1
[ 9 ] Costanzo A, Dionigi M, Masotti D, Mongiardo M, Monti G, Tarricone L, et al. Electromagnetic energy harvesting and wireless power transmission: a unified approach. Proc IEEE 2014;102(11):1692–711. link1
[10] Carvalho NB, Georgiadis A, Costanzo A, Rogier H, Collado A, García JA, et al. Wireless power transmission: R&D activities within Europe. IEEE Trans Microw Theory Tech 2014;62(4):1031–45. link1
[11] Costanzo A, Masotti D. Smart solutions in smart spaces: getting the most from far-field wireless power transfer. IEEE Microw Mag 2016;17(5):30–45. link1
[12] Popovic Z. Near- and far-field wireless power transfer. In: Proceedings of 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS); 2017 Oct 18–20; Nis, Serbia; 2017. p. 3–6.
[13] Hester JGD, Kimionis J, Tentzeris MM. Printed motes for IoT wireless networks: state of the art, challenges, and outlooks. IEEE Trans Microw Theory Tech 2017;65(5):1819–30. link1
[14] Costanzo A, Masotti D. Energizing 5G: near- and far-field wireless energy and data transfer as an enabling technology for the 5G IoT. IEEE Microw Mag 2017;18(3):125–36. link1
[15] Wagih M, Weddell AS, Beeby S. Rectennas for radio-frequency energy harvesting and wireless power transfer: a review of antenna design. IEEE Antennas Propag Mag 2020;62(5):95–107. link1
[16] Shinohara N. History and innovation of wireless power transfer via microwaves. IEEE J Microw 2021;1(1):218–28. link1
[17] Li L, Zhang X, Song C, Huang Y. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting. Appl Phys Lett 2020;116(6):060501. link1
[18] Surender D, Khan T, Talukdar FA, De A, Antar YMM, Freundorder AP. Key components of rectenna system: a comprehensive survey. IETE J Res. In press.
[19] Campi T, Cruciani S, Palandrani F, De Santis V, Hirata A, Feliziani M. Wireless power transfer charging system for AIMDs and pacemakers. IEEE Trans Microw Theory Tech 2016;64(2):633–42. link1
[20] Jadidian J, Katabi D. Magnetic MIMO: how to charge your phone in your pocket. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking; 2014 Sep 7–11; Maui, HI, USA; 2014. p. 495–506.
[21] Karalis A, Joannopoulos JD, Soljacˇic´ M. Efficient wireless non-radiative midrange energy transfer. Ann Phys 2008;323(1):34–48. link1
[22] Schormans M, Valente V, Demosthenous A. Frequency splitting analysis and compensation method for inductive wireless powering of implantable biosensors. Sensors 2016;16(8):1229. link1
[23] McSpadden JO, Mankins JC. Space solar power programs and microwave wireless power transmission technology. IEEE Microw Mag 2002;3(4):46–57. link1
[24] Talla V, Kellogg B, Gollakota S, Smith JR. Battery-free cellphone. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017;1(2):1–20. link1
[25] Misra V, Bozkurt A, Calhoun B, Jackson T, Jur J, Lach J, et al. Flexible technologies for self-powered wearable health and environmental sensing. Proc IEEE 2015;103(4):665–81. link1
[26] Palazzi V, Hester J, Bito J, Alimenti F, Kalialakis C, Collado A, et al. A novel ultralightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans Microw Theory Tech 2018;66(1):366–79. link1
[27] Shen S, Chiu CY, Murch RD. Multiport pixel rectenna for ambient RF energy harvesting. IEEE Trans Antennas Propag 2018;66(2):644–56. link1
[28] Sun H, Guo Y, He M, Zhong Z. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett 2012;11:929–32. link1
[29] Popovic Z, Falkenstein EA, Costinett D, Zane R. Low-power far-field wireless powering for wireless sensors. Proc IEEE 2013;101(6):1397–409. link1
[30] Yang Y, Li J, Li L, Liu Y, Zhang B, Zhu H, et al. A 5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer. IEEE Antennas Wirel Propag Lett 2018;17(7):1276–80. link1
[31] Sun H, Geyi W. A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications. IEEE Antennas Wirel Propag Lett 2017;16:1451–4. link1
[32] Li L, Zhang X, Song C, Zhang W, Jia T, Huang Y. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Trans Microw Theory Tech 2021;69(3):1518–28. link1
[33] Zhang X, Liu H, Li L. Tri-band miniaturized wide-angle and polarizationinsensitive metasurface for ambient energy harvesting. Appl Phys Lett 2017;111(7):071902. link1
[34] Ho DK, Ngo VD, Kharrat I, Vuong TP, Nguyen QC, Le MT. A novel dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz. Adv Sci Technol Eng Syst J 2017;2(3):612–6. link1
[35] Zeng M, Andrenko AS, Liu X, Li Z, Tan HZ. A compact fractal loop rectenna for RF energy harvesting. IEEE Antennas Wirel Propag Lett 2017;16:2424–7. link1
[36] Shi Y, Jing J, Fan Y, Yang L, Wang M. Design of a novel compact and efficient rectenna for WiFi energy harvesting. Prog Electromagn Res C 2018;83:57–70. link1
[37] Liu C, Guo YX, Sun H, Xiao S. Design and safety considerations of an implantable rectenna for far-field wireless power transfer. IEEE Trans Antennas Propag 2014;62(11):5798–806. link1
[38] Zhu N, Ziolkowski RW, Xin H. A metamaterial-inspired, electrically small rectenna for high-efficiency, low power harvesting and scavenging at the global positioning system L1 frequency. Appl Phys Lett 2011;99(11):114101. link1
[39] Gu X, Hemour S, Guo L, Wu K. Integrated cooperative ambient power harvester collecting ubiquitous radio frequency and kinetic energy. IEEE Trans Microw Theory Tech 2018;66(9):4178–90. link1
[40] Hosain MK, Kouzani AZ, Tye SJ, Abulseoud OA, Amiet A, Galehdar A, et al. Development of a compact rectenna for wireless powering of a headmountable deep brain stimulation device. IEEE J Transl Eng Health Med 2014;2:1–13. link1
[41] Quddious A, Zahid S, Tahir FA, Antoniades MA, Vryonides P, Nikolaou S. Dualband compact rectenna for UHF and ISM wireless power transfer systems. IEEE Trans Antennas Propag 2021;69(4):2392–7. link1
[42] Eid A, Hester JGD, Costantine J, Tawk Y, Ramadan AH, Tentzeris MM. A compact source–load agnostic flexible rectenna topology for IoT devices. IEEE Trans Antennas Propag 2020;68(4):2621–9. link1
[43] Hoefle M, Haehnsen K, Oprea I, Cojocari O, Penirschke A, Jakoby R. Compact and sensitive millimetre wave detectors based on low barrier Schottky diodes on impedance matched planar antennas. J Infrared Millim Terahertz Waves 2014;35(11):891–908. link1
[44] Chuma EL, Rodríguez LDLT, Iano Y, Roger LLB, Sanchez-Soriano MA. Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area. IET Microw Antennas Propag 2018;12(2):173–8. link1
[45] Shrestha S, Lee SR, Choi DY. A new fractal-based miniaturized dual band patch antenna for RF energy harvesting. Int J Antennas Propag 2014;2014:1–9. link1
[46] Bakogianni S, Koulouridis S. A dual-band implantable rectenna for wireless data and power support at sub-GHz region. IEEE Trans Antennas Propag 2019;67(11):6800–10. link1
[47] Cheng HW, Yu TC, Luo CH. Direct current driving impedance matching method for rectenna using medical implant communication service band for wireless battery charging. IET Microw Antennas Propag 2013;7(4):277–82. link1
[48] Tang MC, Wang H, Ziolkowski RW. Design and testing of simple, electrically small, low-profile, Huygens source antennas with broadside radiation performance. IEEE Trans Antennas Propag 2016;64(11):4607–17. link1
[49] Lin W, Ziolkowski RW, Huang J. Electrically small, low profile, highly efficient, Huygens dipole rectennas for wirelessly powering Internet-of-Things (IoT) devices. IEEE Trans Antennas Propag 2019;67(6):3670–9. link1
[50] Lin W, Ziolkowski RW. Electrically small, single-substrate Huygens dipole rectenna for ultracompact wireless power transfer applications. IEEE Trans Antennas Propag 2021;69(2):1130–4. link1
[51] Lin W, Ziolkowski RW. Wirelessly powered light and temperature sensors facilitated by electrically small omnidirectional and Huygens dipole antennas. Sensors 2019;19(9):1998. link1
[52] Lin W, Ziolkowski RW. Electrically-small, low-profile, Huygens circularly polarized antenna. IEEE Trans Antennas Propag 2018;66(2):636–43. link1
[53] Lin W, Ziolkowski RW. Electrically small Huygens CP rectenna with a driven loop element maximizes its wireless power transfer efficiency. IEEE Trans Antennas Propag 2020;68(1):540–5. link1
[54] Lin W, Ziolkowski RW. Electrically small Huygens antenna-based fullyintegrated wireless power transfer and communication system. IEEE Access 2019;7:39762–9. link1
[55] Luk KM, Wong H. A new wideband unidirectional antenna element. Int J Microw Opt Technol 2006;1(1):35–44. link1
[56] Ge L, Luk KM. A low-profile magneto-electric dipole antenna. IEEE Trans Antennas Propag 2012;60(4):1684–9. link1
[57] Luk KM, Wu B. The magnetoelectric dipole—a wideband antenna for base stations in mobile communications. Proc IEEE 2012;100(7):2297–307. link1
[58] Wang J, Li Y, Wang J, Ge L, Chen M, Zhang Z, et al. A low-profile vertically polarized magneto-electric monopole antenna with a 60% bandwidth for illimetre-wave applications. IEEE Trans Antennas Propag 2020;69(1):3–13. link1
[59] Li Y, Ge L, Chen M, Zhang Z, Li Z, Wang J. Multibeam 3-D-printed illimet lens fed by magnetoelectric dipole antennas for illimetre-wave MIMO applications. IEEE Trans Antennas Propag 2019;67(5):2923–33. link1
[60] Ziolkowski RW. Using Huygens multipole arrays to realize unidirectional needle-like radiation. Phys Rev X 2017;7(3):031017. link1
[61] Ziolkowski RW. Low profile, broadside radiating, electrically small Huygens source antennas. IEEE Access 2015;3:2644–51. link1
[62] Balanis CA. Antenna theory: analysis and design. 3rd ed. New York City: John Wiley & Sons; 2005. link1
[63] Ponnimbaduge Perera TD, Jayakody DNK, Sharma SK, Chatzinotas S, Li J. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun Surv Tutor 2018;20(1):264–302. link1
[64] Olgun U, Chen CC, Volakis JL. Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wirel Propag Lett 2011;10:262–5. link1
[65] Lee DJ, Lee SJ, Hwang IJ, Lee WS, Yu JW. Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer. IEEE Trans Microw Theory Tech 2017;65(9):3409–18. link1
[66] Parks AN, Smith JR. Sifting through the airwaves: efficient and scalable multiband RF harvesting. In: Proceedings of 2014 IEEE International Conference on RFID; 2014 Apr 8–10; Orlando, FL, USA; 2014. p. 74–81.