Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 8, Issue 1 doi: 10.1016/j.eng.2021.10.002

Blockchain for Transparent Data Management Toward 6G

a Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
b Huawei Technologies Canada, Ottawa, ON K2K 3J1, Canada

Received:2020-12-20 Revised:2020-07-06 Accepted: 2020-07-18 Available online:2021-10-06

Next Previous


The wealth of user data acts as a fuel for network intelligence toward the sixth generation wireless networks (6G). Due to data heterogeneity and dynamics, decentralized data management (DM) is desirable for achieving transparent data operations across network domains, and blockchain can be a promising solution. However, the increasing data volume and stringent data privacy-preservation requirements in 6G bring significantly technical challenge to balance transparency, efficiency, and privacy requirements in decentralized blockchain-based DM. In this paper, we propose blockchain solutions to address the challenge. First, we explore the consensus protocols and scalability mechanisms in blockchains and discuss the roles of DM stakeholders in blockchain architectures. Second, we investigate the authentication and authorization requirements for DM stakeholders. Third, we categorize DM privacy requirements and study blockchain-based mechanisms for collaborative data processing. Subsequently, we present research issues and potential solutions for blockchain-based DM toward 6G from these three perspectives. Finally, we conclude this paper and discuss future research directions.


Fig. 1

Fig. 2

Fig. 3


[1]  Shen X, Gao J, Wu W, Lyu K, Li M, Zhuang W, et al. AI-assisted network-slicing based next-generation wireless networks. IEEE Open J Veh Technol 2020;1:45–66. link1

[2]  Wu W, Chen N, Zhou C, Li M, Shen X, Zhuang W, et al. Dynamic RAN slicing for service-oriented vehicular networks via constrained learning. IEEE J Sel Areas Commun 2021;39(7):2076–89. link1

[3]  Dai Y, Xu D, Maharjan S, Chen Z, He Q, Zhang Y. Blockchain and deep reinforcement learning empowered intelligent 5G beyond. IEEE Netw 2019;33(3):10–7. link1

[4]  Dai HN, Wong RCW, Wang H, Zheng Z, Vasilakos AV. Big data analytics for large-scale wireless networks: challenges and opportunities. ACM Comput Surv 2019;52(5):1–36. link1

[5]  Zhou C, Wu W, He H, Yang P, Lyu F, Cheng N, et al. Deep reinforcement learning for delay-oriented IoT task scheduling in space–air–ground integrated network. IEEE Trans Wirel Commun 2021;20(2):911–25. link1

[6]  Shen X, Huang C, Liu D, Xue L, Zhuang W, Sun S, et al. Data management for future wireless networks: architecture, privacy preservation, and regulation. IEEE Netw 2021;35(1):8–15. link1

[7]  Li R, Asaeda H. A blockchain-based data life cycle protection framework for information-centric networks. IEEE Commun Mag 2019;57(6):20–5. link1

[8]  Freund GP, Fagundes PB, de Macedo DDJ. An analysis of blockchain and GDPR under the data lifecycle perspective. Mob Netw Appl 2020;26(2):266–76. link1

[9]  Abiteboul S, Stoyanovich J. Transparency, fairness, data protection, neutrality: data management challenges in the face of new regulation. J Data Inf Qual 2019;11(3):1–9. link1

[10]  General Data Protection Regulation [Internet]. Brussel: European Commission; [cited 2020 Dec 24]. Available from:

[11]  Herian R. Blockchain, GDPR, and fantasies of data sovereignty. Law Innov Technol 2020;12(1):156–74. link1

[12]  Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. Report. Satoshi: Nakamoto Instityte; 2008. link1

[13]  Xu C, Zhang C, Xu J. vChain: enabling verifiable boolean range queries over blockchain databases. In: Proceedings of the 2019 International Conference on Management of Data; 2019 Jun 30–Jul 5; Amsterdam, the Netherlands; 2019. p. 141–58.

[14]  Wood G. Ethereum: a secure decentralised generalised transaction ledger. Report Ethereum Project; 2014. link1

[15]  Vo HT, Kundu A, Mohania MK. Research directions in blockchain data management and analytics. In: Proceedings of the 21st International Conference on Extending Database Technology (EDBT); 2018 Mar 26–29; Vienna, Austria; 2018. p. 445–8.

[16]  Zyskind G, Nathan O, Pentland AS. Decentralizing privacy: using blockchain to protect personal data. In: Proceedings of 2015 IEEE Security and Privacy Workshops; 2015 May 21–22; San Jose, CA, USA; 2015. p. 180–84.

[17]  Deepa N, Pham QV, Nguyen DC, Bhattacharya S, Prabadevi B, Gadekallu TR, et al. A survey on blockchain for big data: approaches, opportunities, and future directions. 2020. arXiv:2009.00858.

[18]  Zhang G, Li T, Li Y, Hui P, Jin D. Blockchain-based data sharing system for AIpowered network operations. J Commun Inf Netw 2018;3(3):1–8. link1

[19]  Wu H, Cao J, Yang Y, Tung CL, Jiang S, Tang B, et al. Data management in supply chain using blockchain: challenges and a case study. In: Proceedings of 2019 28th International Conference on Computer Communication and Networks; 2019 Jul 29–Aug 1; Valencia, Spain; 2019. p. 1–8.

[20]  Oktian YE, Lee SG, Lee BG. Blockchain-based continued integrity service for IoT big data management: a comprehensive design. Electronics 2020;9 (9):1434. link1

[21]  Shi P, Wang H, Yang S, Chen C, Yang W. Blockchain-based trusted data sharing among trusted stakeholders in IoT. Softw Pract Exper 2021;51(10):2051–64. link1

[22]  Xiong Z, Zhang Y, Luong NC, Niyato D, Wang P, Guizani N, et al. The best of both worlds: a general architecture for data management in blockchainenabled Internet-of-Things. IEEE Netw 2020;34(1):166–73. link1

[23]  Shi S, He D, Li L, Kumar N, Khan MK, Choo KKR. Applications of blockchain in ensuring the security and privacy of electronic health record systems: a survey. Comput Secur 2020;97:101966. link1

[24]  Eberhardt J, Tai S. ZoKrates-scalable privacy-preserving off-chain computations. In: Proceedings of 2018 IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data; 2018 Jul 30–Aug 3; Halifax, NS, Canada; 2018. p. 1084–91.

[25]  Abboud K, Omar HA, Zhuang W. Interworking of DSRC and cellular network technologies for V2X communications: a survey. IEEE Tran Veh Technol 2016;65(12):9457–70. link1

[26]  Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A, et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference; 2018 Apr 23–26; Porto, Portugal; 2018. p. 1–15.

[27]  Garay J, Kiayias A, Leonardos N. The Bitcoin backbone protocol: analysis and applications. In: Proceedings of EUROCRYPT 2015; 2015 Apr 26–30; Sofia, Bulgaria; 2015. p. 281–310.

[28]  Bagaria V, Kannan S, Tse D, Fanti G, Viswanath P. Prism: deconstructing the blockchain to approach physical limits. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security; 2019 Nov 11–15; London, UK; 2019. p. 585–602.

[29]  Yu H, Nikolic´ I, Hou R, Saxena P. OHIE: blockchain scaling made simple. In: Proceedings of IEEE Symposium on Security and Privacy; 2020 May 18–21; San Francisco, CA, USA; 2020. p. 90–105.

[30]  Lin C, He D, Huang X, Kumar N, Choo KKR. BCPPA: a blockchain-based conditional privacy-preserving authentication protocol for vehicular ad hoc networks. IEEE Trans Intell Transp Syst. In press.

[31]  Li M, Weng J, Yang A, Liu JN, Lin X. Toward blockchain-based fair and anonymous ad dissemination in vehicular networks. IEEE Trans Veh Techol 2019;68(11):11248–59. link1

[32]  Cheng HT, Shan H, Zhuang W. Infotainment and road safety service support in vehicular networking: from a communication perspective. Mech Syst Signal Process 2011;25(6):2020–38. link1

[33]  Li M, Zhu L, Lin X. Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing. IEEE Internet Things J 2018;6 (3):4573–84. link1

[34]  Huang C, Lu R, Ni J, Shen X. DAPA: a decentralized, accountable, and privacypreserving architecture for car sharing services. IEEE Trans Veh Technol 2020;69(5):4869–82. link1

[35]  Aujla GS, Singh A, Singh M, Sharma S, Kumar N, Choo KKR. BloCkEd: blockchain-based secure data processing framework in edge envisioned V2X environment. IEEE Trans Veh Technol 2020;69(6):5850–63. link1

[36]  Jameel F, Javed MA, Zeadally S, Jäntti R. Efficient mining cluster selection for blockchain-based cellular V2X communications. IEEE Trans Intell Transp Syst 2021;22(7):4064–72. link1

[37]  Rawat DB, Doku R, Adebayo A, Bajracharya C, Kamhoua C. Blockchain enabled named data networking for secure vehicle-to-everything communications. IEEE Netw 2020;34(5):185–9. link1

[38]  Yang Z, Yang K, Lei L, Zheng K, Leung VCM. Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J 2018;6 (2):1495–505. link1

[39]  Su Z, Wang Y, Xu Q, Zhang N. LVBS: lightweight vehicular blockchain for secure data sharing in disaster rescue. IEEE Trans Dependable Secur Comput. In press.

[40]  Lin X, Wu J, Mumtaz S, Garg S, Li J, Guizani M. Blockchain-based on-demand computing resource trading in IoV-assisted smart city. IEEE Trans Emerg Top Comput. In press.

[41]  Li C, Fu Y, Yu FR, Luan TH, Zhang Y. Vehicle position correction: a vehicular blockchain networks-based GPS error sharing framework. IEEE Trans Intell Transp Syst 20201;22(2):898–912.

[42]  Qian LP, Wu Y, Xu X, Ji B, Shi Z, Jia W. Distributed charging-record management for electric vehicle networks via blockchain. IEEE Internet Things J 2021;8(4):2150–62. link1

[43]  Yang H, Liang Y, Yuan J, Yao Q, Yu A, Zhang J. Distributed blockchain-based trusted multidomain collaboration for mobile edge computing in 5G and beyond. IEEE Trans Ind Inform 2020;16(11):7094–104. link1

[44]  Yang H, Yuan J, Yao H, Yao Q, Yu A, Zhang J. Blockchain-based hierarchical trust networking for JointCloud. IEEE Internet Things J 2020;7(3):1667–77. link1

[45]  Xu Y, Zhang C, Wang G, Qin Z, Zeng Q. A blockchain-enabled deduplicatable data auditing mechanism for network storage services. IEEE Trans Emerg Top Comput. In press.

[46]  Zhu L, Wu Y, Gai K, Choo KKR. Controllable and trustworthy blockchain-based cloud data management. Future Gener Comput Syst 2019;91:527–35. link1

[47]  Chen L, Lee WK, Chang CC, Choo KKR, Zhang N. Blockchain based searchable encryption for electronic health record sharing. Future Gener Comput Syst 2019;95:420–9. link1

[48]  Zhang Y, Xu C, Cheng N, Li H, Yang H, Shen X. Chronos+ : an accurate blockchain-based time-stamping scheme for cloud storage. IEEE Trans Serv Comput 2020;13(2):216–29. link1

[49]  Zhang Y, Xu C, Lin X, Shen X. Blockchain-based public integrity verification for cloud storage against procrastinating auditors. IEEE Trans Cloud Comput 2021;9(3):92337. link1

[50]  Liu Y, He D, Obaidat MS, Kumar N, Khan MK, Choo KKR. Blockchain-based identity management systems: a review. J Netw Comput Appl 2020;166:102731. link1

[51]  Wang J, Wu L, Choo KKR, He D. Blockchain-based anonymous authentication with key management for smart grid edge computing infrastructure. IEEE Trans Ind Inform 2020;16(3):1984–92. link1

[52]  Shen M, Liu H, Zhu L, Xu K, Yu H, Du X, et al. Blockchain-assisted secure device authentication for cross-domain industrial IoT. IEEE J Sel Areas Commun 2020;38(5):942–54. link1

[53]  Yang M, Zhu T, Liang K, Zhou W, Deng RH. A blockchain-based location privacy-preserving crowdsensing system. Future Gener Comput Syst 2019;94:408–18. link1

[54]  Tosh D, Shetty S, Liang X, Kamhoua C, Njilla LL. Data provenance in the cloud: a blockchain-based approach. IEEE Consum Electron Mag 2019;8(4):38–44. link1

[55]  Rahman MS, Omar AAL, Bhuiyan MZA, Basu A, Kiyomoto S, Wang G. Accountable cross-border data sharing using blockchain under relaxed trust assumption. IEEE Trans Eng Manag 2020;67(4):1476–86. link1

[56]  Liang W, Fan Y, Li KC, Zhang D, Gaudiot JL. Secure data storage and recovery in industrial blockchain network environments. IEEE Trans Ind Inform 2020;16 (10):6543–52. link1

[57]  Gilani K, Bertin E, Hatin J, Crespi N. A survey on blockchain-based identity management and decentralized privacy for personal data. In: Proceedings of 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS); 2020 Sep 28–30; Paris, France; 2020. p. 97– 101.

[58]  Patsonakis C, Samari K, Roussopoulos M, Kiayias A. Towards a smart contractbased, decentralized, public-key infrastructure. In: Proceedings of International Conference on Cryptology and Network Security; 2017 Nov 30–Dec 2; Hong Kong, China; 2017. p. 299–321.

[59]  Wang Z, Lin J, Cai Q, Wang Q, Zha D, Jing J. Blockchain-based certificate transparency and revocation transparency. IEEE Trans Dependable Secur Comput. In press.

[60]  Kubilay MY, Kiraz MS, Mantar HA. CertLedger: a new PKI model with certificate transparency based on blockchain. Comput Secur 2019;85:333–52. link1

[61]  Xu R, Joshi J. Trustworthy and transparent third-party authority. ACM Trans Internet Technol 2020;20(4):31. link1

[62]  Chen J, Yao S, Yuan Q, He K, Ji S, Du R. CertChain: public and efficient certificate audit based on blockchain for TLS connections. In: Proceedings of IEEE INFOCOM 2018; 2018 Apr 15–19; Honolulu, HI, USA; 2018. p. 2060–8.

[63]  Kondova G, Erbguth J. Self-sovereign identity on public blockchains and the GDPR. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing; 2020 Mar 30–Apr 3; 2020. p. 342–5.

[64]  Fan K, Pan Q, Zhang K, Bai Y, Sun S, Li H, et al. A secure and verifiable data sharing scheme based on blockchain in vehicular social networks. IEEE Trans Veh Technol 2020;69(6):5826–35. link1

[65]  Yu G, Zha X, Wang X, Ni W, Yu K, Yu P, et al. Enabling attribute revocation for fine-grained access control in blockchain–IoT systems. IEEE Trans Eng Manag 2020;67(4):1213–30. link1

[66]  Hu Y, Kumar S, Popa RA. Ghostor: toward a secure data-sharing system from decentralized trust. In: Proceedings of NSDI; 2020 Feb 25–27; Santa Clara, CA, USA; 2020. p. 851–77.

[67]  Yuen TH, Sun SF, Liu JK, Au MH, Esgin MF, Zhang Q, et al. RingCT 3.0 for blockchain confidential transaction: shorter size and stronger security. In: Bonneau J, Heninger N, editors. Financial cryptography and data security. Cham: Springer; 2020. p. 464–83.

[68]  Hardjono T, Pentland A. Verifiable anonymous identities and access control in permissioned blockchains. 2019. arXiv:1903.04584.

[69]  Camenisch J, Drijvers M, Dubovitskaya M. Practical UC-secure delegatable credentials with attributes and their application to blockchain. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security; 2017 Oct 30–Nov 3; Dallas, TX, USA; 2017. p. 683–99.

[70]  Sonnino A, Al-Bassam M, Bano S, Meiklejohn S, Danezis G. Coconut: threshold issuance selective disclosure credentials with applications to distributed ledgers. 2018. arXiv:1802.07344.

[71]  Yu Y, Zhao Y, Li Y, Du X, Wang L, Guizani M. Blockchain-based anonymous authentication with selective revocation for smart industrial applications. IEEE Trans Ind Inform 2020;16(5):3290–300. link1

[72]  Gao S, Piao G, Zhu J, Ma X, Ma J. TrustAccess: a trustworthy secure ciphertextpolicy and attribute hiding access control scheme based on blockchain. IEEE Trans Veh Technol 2020;69(6):5784–98. link1

[73]  Zhou L, Du S, Zhu H, Chen C, Ota K, Dong M. Location privacy in usage-based automotive insurance: attacks and countermeasures. IEEE Trans Inf Forensics Secur 2018;14(1):196–211. link1

[74]  Frankle J, Park S, Shaar D, Goldwasser S, Weitzner D. Practical accountability of secret processes. In: Proceedings of the 27th USENIX Security Symposium; 2018 Aug 15–17; Baltimore, MD, USA; 2018. p. 657–74.

[75]  Antignac T, Scandariato R, Schneider G. A privacy-aware conceptual model for handling personal data. In: Margaria T, Steffen B, editors. Leveraging applications of formal methods, verification and validation: foundational techniques. Cham: Springer; 2016. p. 942–57.

[76]  Labadie C, Legner C. Understanding data protection regulations from a data management perspective: a capability-based approach to EU-GDPR. In: Proceedings of the 14th International Conference on Wirtschaftsinformatik; 2019 Feb 24–27; Siegen, Germany; 2019. p. 1292–306.

[77]  Barati M, Rana O, Theodorakopoulos G, Burnap P. Privacy-aware cloud ecosystems and GDPR compliance. In: Proceedings of 2019 7th International Conference on Future Internet of Things and Cloud; 2019 Aug 26–28; Istanbul, Turkey; 2019. p. 117–24.

[78]  Corrales M, Jurcˇys P, Kousiouris G. Smart contracts and smart disclosure: coding a GDPR compliance framework. In: Corrales M, Fenwick M, Haapio H, editors. Legal tech, smart contracts and blockchain. Singapore: Springer Nature Singapore Pte Ltd.; 2019. p. 189–220.

[79]  Bowe S, Chiesa A, Green M, Miers I, Mishra P, Wu H. ZEXE: enabling decentralized private computation. In: Proceedings of 2020 IEEE Symposium on Security and Privacy (SP); 2020 May 18–21; San Francisco, CA, USA; 2020. p. 947–64.

[80]  Ma Z, Wang X, Jain DK, Khan H, Gao H, Wang Z. A blockchain-based trusted data management scheme in edge computing. IEEE Trans Ind Inform 2019;6 (3):2013–21. link1

[81]  Parno B, Howell J, Gentry C, Raykova M. Pinocchio: nearly practical verifiable computation. In: Proceedings of 2013 IEEE Symposium on Security and Privacy; 2013 May 19–22; Berkeley, CA, USA; 2013. p. 238–52.

[82]  Maller M, Bowe S, Kohlweiss M, Meiklejohn S. Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security; 2019 Nov 11–15; London, UK; 2019. p. 2111–28.

[83]  Costan V, Devadas S. Intel SGX explained. 2016. Cryptology ePrint Archive:86.

[84]  Cheng R, Zhang F, Kos J, He W, Hynes N, Johnson N, et al. Ekiden: a platform for confidentiality-preserving, trustworthy, and performant smart contracts. In: Proceedings of IEEE European Symposium on Security an Privacy; 2019 Jun 17–19; Stockholm, Sweden; 2019. p. 185–200.

[85]  Ayoade G, Karande V, Khan L, Hamlen K. Decentralized IoT data management using blockchain and trusted execution environment. In: Proceedings of IEEE International Conference on Information Reuse and Integration (IRI); 2018 Jul 6–9; Salt Lake City, UT, USA; 2018. p. 15–22.

[86]  Pass R, Shi E, Tramèr F. Formal abstractions for attested execution secure processors. In: Coron JS, Nielsen JB, editors. Advances in cryptology— EUROCRYPT 2017. Cham: Springer; 2017. p. 260–89.

[87]  Dong C, Wang Y, Aldweesh A, McCorry P, van Moorsel A. Betrayal, distrust, and rationality: smart counter-collusion contracts for verifiable cloud computing. In: Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security; 2017 Oct 30–Nov 3; Dallas, TX, USA; 2017. p. 211–27.

[88]  Brewster C, Nouwt B, Raaijmakers S, Verhoosel J. Ontology-based access control for FAIR data. Data Intell 2020;2(1–2):66–77.

[89]  Bhaskaran K, Ilfrich P, Liffman D, Vecchiola C, Jayachandran P, Kumar A, et al. Double-blind consent-driven data sharing on blockchain. In: Proceedings of 2018 IEEE International Conference on Cloud Engineering (IC2E); 2018 Apr 17–20; Orlando, FL, USA; 2018. p. 385–91.

[90]  Li H, Pei L, Liao D, Chen S, Zhang M, Xu D. FADB: a fine-grained access control scheme for VANET data based on blockchain. IEEE Access 2020;8:85190–203. link1

[91]  Koutsos V, Papadopoulos D, Chatzopoulos D, Tarkoma S, Hui P. Agora: a privacy-aware data marketplace. 2020. Cryptology ePrint Archive:865.

[92]  Liu D, Alahmadi A, Ni J, Lin X, Shen X. Anonymous reputation system for IIoTenabled retail marketing atop pos blockchain. IEEE Trans Ind Inform 2019;15 (6):3527–37. link1

[93]  Lone AH, Mir RN. Reputation driven dynamic access control framework for IoT atop PoA ethereum blockchain. 2020. Cryptology ePrint Archive:566.

[94]  Xu C, Wang K, Li P, Guo S, Luo J, Ye B, et al. Making big data open in edges: a resource-efficient blockchain-based approach. IEEE Trans Parallel Distrib Syst 2019;30(4):870–82. link1

[95]  Makhdoom I, Zhou I, Abolhasan M, Lipman J, Ni W. PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput Secur 2020;88:101653. link1

[96]  Truong NB, Sun K, Lee GM, Guo Y. GDPR-compliant personal data management: a blockchain-based solution. IEEE Trans Inf Forensics Secur 2020;15:1746–61. link1

[97]  Zheng X, Mukkamala RR, Vatrapu R, Ordieres-Mere J. Blockchain-based personal health data sharing system using cloud storage. In: Proceedings of IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom); 2018 Sep 17–20; Ostrava, Czech Republic; 2018. p. 1–6.

[98]  Zheng BK, Zhu LH, Shen M, Gao F, Zhang C, Li YD, et al. Scalable and privacypreserving data sharing based on blockchain. J Comput Sci Technol 2018;33 (3):557–67. link1

[99]  Gunasinghe H, Kundu A, Bertino E, Krawczyk H, Chari S, Singh K, et al. PrividEx: privacy preserving and secure exchange of digital identity assets. In: Proceedings of the World Wide Web Conference; 2019 May 13–17; San Francisco, CA, USA; 2019. p. 594–604.

[100]  Dai W, Dai C, Choo KKR, Cui C, Zou D, Jin H. SDTE: a secure blockchain-based data trading ecosystem. IEEE Trans Inf Forensics Secur 2019;15:725–37. link1

[101]  Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M, Mainar-Ruiz G, et al. VC3: trustworthy data analytics in the cloud using SGX. In: Proceedings of 2015 IEEE Symposium on Security and Privacy; 2015 May 17–21; San Jose, CA, USA; 2015. p. 38–54.

[102]  Dziembowski S, Eckey L, Faust S. Fairswap: how to fairly exchange digital goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security; 2018 Oct 15–19; Toronto, ON, Canada; 2018. p. 967–84.

[103]  Liu X, Sun SX, Huang G. Decentralized services computing paradigm for blockchain-based data governance: programmability, interoperability, and intelligence. IEEE Trans Serv Comput 2019;13(2):343–55. link1

[104]  Weng J, Weng J, Zhang J, Li M, Zhang Y, Luo W. DeepChain: auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans Dependable Secur Comput 2021;18(5):2438–55. link1

[105]  Hu S, Cai C, Wang Q, Wang C, Luo X, Ren K. Searching an encrypted cloud meets blockchain: a decentralized, reliable and fair realization. In: Proceedings of IEEE INFOCOM 2018; 2018 Apr 16–19; Honolulu, HI, USA; 2018. p. 792–800.

[106]  Nguyen K, Ghinita G, Naveed M, Shahabi C. A privacy-preserving, accountable and spam-resilient geo-marketplace. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information System; 2019 Nov 5–8; Chicago, IL, USA; 2019. p. 299–308.

[107]  Zhang Y, Genkin D, Katz J, Papadopoulos D, Papamanthou C. A zeroknowledge version of VSQL. 2017. Cryptology ePrint Archive:1146.

[108]  Neisse R, Steri G, Nai-Fovino I. A blockchain-based approach for data accountability and provenance tracking. In: Proceedings of the 12th International Conference on Availability, Reliability and Security; 2017 Aug 29–Sep 1; Reggio Calabria, Italy; 2017. p. 1–10.

[109]  Cucurull J, Puiggalí J. Distributed immutabilization of secure logs. In: Barthe G, Markatos E, Samarati P, editors. Security and trust management. Cham: Springer; 2016. p. 122–37.

[110]  Ruan P, Chen G, Dinh TTA, Lin Q, Ooi BC, Zhang M. Fine-grained, secure and efficient data provenance on blockchain systems. In: Proceedings of the 45th International Conference on Very Large Data Bases; 2019 Aug 26–30; Los Angles, CA, USA; 2019. p. 975–88.

[111]  Tang YR, Xing Z, Xu C, Chen J, Xu J. Lightweight blockchain logging for dataintensive applications. In: Zohar A, Eyal I, Teague V, Clark J, Bracciali A, Pintore F, et al., editors. Financial cryptography and data security. Berlin: Springer Verlag GmbH; 2018. p. 308–24.

[112]  Ahmad A, Saad M, Njilla L, Kamhoua C, Bassiouni M, Mohaisen A. BlockTrail: a scalable multichain solution for blockchain-based audit trails. In: Proceedings of 2019 IEEE International Conference on Communication (ICC); 2019 May 20–24; Shanghai, China; 2019.

[113]  Liu D, Ni J, Huang C, Lin X, Shen XS. Secure and efficient distributed network provenance for IoT: a blockchain-based approach. IEEE Internet Things J 2020;7(8):7564–74. link1

[114]  Tomescu A, Bhupatiraju V, Papadopoulos D, Papamanthou C, Triandopoulos N, Devadas S. Transparency logs via append-only authenticated dictionaries. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security; 2019 Nov 11–15; London, UK; 2019. p. 1299–316.

[115]  Ding S, Cao J, Li C, Fan K, Li H. A novel attribute-based access control scheme using blockchain for IoT. IEEE Access 2019;7:38431–41. link1

[116]  Matetic S, Wüst K, Schneider M, Kostiainen K, Karame G, Capkun S. BITE: bitcoin lightweight client privacy using trusted execution. In: Proceedings of the 28th USENIX Conference on Security Symposium, 2019 Aug 14–16; Santa Clara, CA, USA; 2019. p. 783–800.

[117]  Chepurnoy A, Papamanthou C, Zhang Y. Edrax: a cryptocurrency with stateless transaction validation. 2018. Cryptology ePrint Archive:968.

[118]  Jiang Y, Wang C, Wang Y, Gao L. A cross-chain solution to integrating multiple blockchains for IoT data management. Sensors 2019;19(9):2042. link1

[119]  Maram SKD, Zhang F, Wang L, Low A, Zhang Y, Juels A, et al. CHURP: dynamiccommittee proactive secret sharing. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security; 2019 Nov 11–15; London, UK; 2019. p. 2369–86.

[120]  Campanelli M, Fiore D, Querol A. LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Proceedings of ACM SIGSAC Conference on Computer and Communications Security; 2019 Nov 11–15; London, UK; 2019. p. 2075–92.

[121]  Lim SY, Fotsing PT, Almasri A, Musa O, Kiah MLM, Ang TF, et al. Blockchain technology the identity management and authentication service disruptor: a survey. Int J Adv Sci Eng Inf Technol 2018;8:1735–45. link1

[122]  Canetti R. Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science; 2001 Oct 8–11; Newport Beach, CA, USA; 2001. p. 136–45.

Related Research