Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 22, Issue 3 doi: 10.1016/j.eng.2021.11.022

Long-Term Observations of Atmospheric Constituents at the First Ground-Based High-Resolution Fourier-Transform Spectrometry Observation Station in China

a Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
b Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
c Center for Excellence in the Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
d Key Laboratory of Precision Scientific Instrumentation of the Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, China
e Anhui Province Key Laboratory of the Polar Environment and Global Change, University of Science and Technology of China, Hefei 230026, China
f Institute of Environmental Physics, University of Bremen, Bremen 28334, Germany
g Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
h Satellite Application Center for Ecology and the Environment, Ministry of Ecology and the Environment of the People’s Republic of China, Beijing 100094, China

Received: 2021-06-03 Revised: 2021-10-06 Accepted: 2021-11-15 Available online: 2022-02-17

Next Previous

Abstract

Long-term observations of the volume mixing ratio (VMR) profiles and total columns of key atmospheric constituents are significant for understanding climate change and the impact of the carbon budget in China. This study provides an overview of the first ground-based high-resolution Fourier-transform spectrometry (FTS) observation station in China, which is located in Hefei, Eastern China. The FTS observation station can observe the total columns and VMR profiles of more than 30 atmospheric constituents. Time series of some key atmospheric constituents observed at the Hefei station since 2014 have been released to the public. The major scientific achievements obtained to date at this station include spectral retrieval characterization and harmonization, investigation of the overall characteristics of key atmospheric constituents, emission estimates, satellite and chemical transport model (CTM) evaluations, and a summary of pollutant sources and transport patterns. An outlook is also presented of the envisaged plan for observations, scientific studies, and data usage at the Hefei station. China has explicitly proposed reaching a peak in its CO2 emissions by 2030 and realizing carbon neutrality by 2060. The Hefei station will provide scientific assistance to the Chinese Government for developing green economy policies and achieving carbon neutrality and the goals of the Paris Agreement.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Sun YW, Liu C, Chan KL, Xie PH, Liu WQ, Zeng Y, et al. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm. Atmos Meas Tech 2013;6(8):1993–2005. link1

[ 2 ] Sun Y, Liu C, Xie P, Hartl A, Chan K, Tian Y, et al. Industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. Atmos Meas Tech 2016;9(3):1167–80. link1

[ 3 ] Chan CK, Yao X. Air pollution in mega cities in China. Atmos Environ 2008;42 (1):1–42. link1

[ 4 ] Ding A, Nie W, Huang X, Chi X, Sun J, Kerminen VM, et al. Long-term observation of air pollution–weather/climate interactions at the SORPES station: a review and outlook. Front Environ Sci Eng 2016;10(5):15. link1

[ 5 ] He KB, Huo H, Zhang Q. Urban air pollution in China: current status, characterizes and progress. Annu Rev Energy Environ 2002;27:397–431. link1

[ 6 ] Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014;514(7521):218–22. link1

[ 7 ] Richter A, Burrows JP, Nüss H, Granier C, Niemeier U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005;437 (7055):129–32. link1

[ 8 ] Sun Y, Liu C, Palm M, Vigouroux C, Notholt J, Hu Q, et al. Ozone seasonal evolution and photochemical production regime in the polluted troposphere in eastern China derived from high-resolution Fourier transform spectrometry (FTS) observations. Atmos Chem Phys 2018;18(19):14569–83. link1

[ 9 ] Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, et al. Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys 2008;8(10):2595–607. link1

[10] Sun Y, Liu C, Zhang L, Palm M, Notholt J, Yin H, et al. Fourier transform infrared time series of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution. Atmos Chem Phys 2020;20 (9):5437–56. link1

[11] Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 2018;18(19):14095–111. link1

[12] Lu X, Hong J, Zhang L, Cooper OR, Schultz MG, Xu X, et al. Severe surface ozone pollution in China: a global perspective. Environ Sci Technol Lett 2018;5 (8):487–94. link1

[13] Sun Y, Yin H, Liu C, Zhang L, Cheng Y, Palm M, et al. Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmos Chem Phys 2021;21(8):6365–87. link1

[14] Lu X, Zhang L, Chen Y, Zhou M, Zheng B, Li K, et al. Exploring 2016–2017 surface ozone pollution over China: source contributions and meteorological influences. Atmos Chem Phys 2019;19(12):8339–61. link1

[15] Sun Y, Yin H, Liu C, Mahieu E, Notholt J, Té Y, et al. The reduction in C2H6 from 2015 to 2020 over Hefei, eastern China, points to air quality improvement in China. Atmos Chem Phys 2021;21(15):11759–79. link1

[16] Hannigan J, Coffey M, Goldman A. Semiautonomous FTS observation system for remote sensing of stratospheric and tropospheric gases. J Atmos Ocean Technol 2009;26(9):1814–28. link1

[17] Wunch D, Toon GC, Wennberg PO, Wofsy SC, Stephens BB, Fischer ML, et al. Calibration of the total carbon column observing network using aircraft profile data. Atmos Meas Tech 2010;3(5):1351–62. link1

[18] De Mazière M, Thompson AM, Kurylo MJ, Wild JD, Bernhard G, Blumenstock T, et al. The network for the detection of atmospheric composition change (NDACC): history, status and perspectives. Atmos Chem Phys 2018;18 (7):4935–64. link1

[19] Franco B, Mahieu E, Emmons LK, Tzompa-Sosa ZA, Fischer EV, Sudo K, et al. Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America. Environ Res Lett 2016;11 (4):044010. link1

[20] Davis SP, Abrams MC, Brault JW. Fourier transform spectrometry. Cambridge: Academic Press; 2001. link1

[21] Messerschmidt J, Macatangay R, Notholt J, Petri C, Warneke T, Weinzierl C. Side by side measurements of CO2 by ground-based Fourier transform spectrometry (FTS). Tellus B Chem Phys Meterol 2010;62(5):749–58. link1

[22] Wunch D, Toon GC, Blavier JF, Washenfelder RA, Notholt J, Connor BJ, et al. The total carbon column observing network. Philos Trans Royal Soc Math Phys Eng Sci 2011;369(1943):2087–112. link1

[23] Washenfelder RA. Column abundances of carbon dioxide and methane retrieved from ground-based near-infrared solar spectra [dissertation]. California: California Institute of Technology; 2006. link1

[24] Chevallier F, Deutscher NM, Conway TJ, Ciais P, Ciattaglia L, Dohe S, et al. Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column. Geophys Res Let 2011;38 (24):1–5. link1

[25] Deutscher NM, Sherlock V, Fletcher SE, Griffith DWT, Notholt J, Macatangay R, et al. Drivers of column-average CO2 variability at Southern Hemispheric total carbon column observing network sites. Atmos Chem Phys 2014;14 (18):9883–901. link1

[26] Guerlet S, Basu S, Butz A, Krol M, Hahne P, Houweling S, et al. Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT. Geophys Res Lett 2013;40(10):2378–83. link1

[27] Keppel-Aleks G, Wennberg PO, Schneider T. Sources of variations in total column carbon dioxide. Atmos Chem Phys 2011;11(8):3581–93. link1

[28] Keppel-Aleks G, Wennberg PO, Washenfelder RA, Wunch D, Schneider T, Toon GC, et al. The imprint of surface fluxes and transport on variations in total column carbon dioxide. Biogeos 2012;9(3):875–91. link1

[29] Sussmann R, Forster F, Rettinger M, Bousquet P. Renewed methane increase for five years (2007–2011) observed by solar FTIR spectrometry. Atmos Chem Phys 2012;12(11):4885–91. link1

[30] Wunch D, Wennberg PO, Messerschmidt J, Parazoo NC, Toon GC, Deutscher NM, et al. The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions. Atmos Chem Phys 2013;13(18):9447–59. link1

[31] Lutsch E, Dammers E, Conway S, Strong K. Long-range transport of NH3, CO, HCN, and C2H6 from the 2014 Canadian Wildfires. Geophys Res Lett 2016;43 (15):8286–97. link1

[32] Viatte C, Strong K, Walker KA, Drummond JR. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic. Atmos Meas Tech 2014;7:1547–70. link1

[33] Viatte C, Strong K, Hannigan J, Nussbaumer E, Emmons LK, Conway S, et al. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models. Atmos Chem Phys 2015;15(5):2227–46. link1

[34] Vigouroux C, Stavrakou T, Whaley C, Dils B, Duflot V, Hermans C, et al. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH) at Reunion Island (21S, 55E) and comparisons with model data. Atmos Chem Phys 2012;12(21):10367–85. link1

[35] Gordon IE, Kassi S, Campargue A, Toon GC. First identification of the a1DgX3Rg electric quadrupole transitions of oxygen in solar and laboratory spectra. J Quant Spectrosc Radiat Transf 2010;111(9):1174–83. link1

[36] Gordon IE, Rothman LS, Toon GC. Revision of spectral parameters for the Band c-bands of oxygen and their validation against atmospheric spectra. J Quant Spectrosc Radiat Transf 2011;112(14):2310–22. link1

[37] Hartmann JM, Tran H, Toon GC. Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 lm regions. Atmos Chem Phys 2009;9(19):7303–12. link1

[38] Long DA, Hodges JT. On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals. J Geophys Res 2012;117(D12):309. link1

[39] Miller CE, Wunch D. Fourier transform spectrometer remote sensing of O2 Aband electric quadrupole transitions. J Quant Spectrosc Radiat Transf 2012;113 (11):1043–50. link1

[40] Reuter M, Bovensmann H, Buchwitz M, Burrows JP, Connor BJ, Deutscher NM, et al. Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: validation with FTS measurements and comparison with model results. J Geophys Res 2011;116(D4):D04301. link1

[41] Reuter M, Bovensmann H, Buchwitz M, Burrows J, Deutscher N, Heymann J, et al. On the potential of the 2041–2047 nm spectral region for remote sensing of atmospheric CO2 isotopologues. J Quant Spectrosc Radiat Transf 2012;113 (16):2009–17. link1

[42] Scheepmaker R, Frankenberg C, Galli A, Butz A, Schrijver H, Deutscher NM, et al. Improved water vapour spectroscopy in the 4174–4300 cm1 region and its impact on SCIAMACHY HDO/H2O measurements. Atmos Meas Tech 2013;6 (4):879–94. link1

[43] Tran H, Hartmann JM. An improved O2 A band absorption model and its consequences for retrievals of photon paths and surface pressures. J Geophys Res 2008;113(D18):D18104. link1

[44] Tran H, Hartmann JM, Toon GC, Brown L, Frankenberg C, Warneke T, et al. The 2m3 band of CH4 revisited with line mixing: consequences for spectroscopy and atmospheric retrievals at 1.67 lm. J Quant Spectrosc Radiat Transf 2010;111 (10):1344–56. link1

[45] Thompson DR, Benner DC, Brown LR, Crisp D, Malathy Devi V, Jiang Y, et al. Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission. J Quant Spectrosc Radiat Transf 2012;113 (17):2265–76. link1

[46] Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, et al. Toward accurate CO2 and CH4 observations from GOSAT. Geophys Res Lett 2011;38 (14):L14812. link1

[47] Boesch H, Deutscher NM, Warneke T, Byckling K, Cogan AJ, Griffith DWT, et al. HDO/H2O ratio retrievals from GOSAT. Atmos Meas Tech 2013;6(3):599–612. link1

[48] Deng F, Jones D, Henze D, Bousserez N, Bowman K, Fisher J, et al. Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmos Chem Phys 2014;14(7):3703–27. link1

[49] Frankenberg C, Wunch D, Toon G, Risi C, Scheepmaker R, Lee JE, et al. Water vapor isotopologue retrievals from high-resolution GOSAT shortwave infrared spectra. Atmos Meas Tech 2013;6(2):263–74. link1

[50] Morino I, Uchino O, Inoue M, Yoshida Y, Yokota T, Wennberg PO, et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra. Atmos Meas Tech 2011;4(6):1061–76. link1

[51] Oshchepkov S, Bril A, Yokota T, Yoshida Y, Blumenstock T, Deutscher NM, et al. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites. Appl Opt 2013;52 (6):1339–50. link1

[52] Parker R, Boesch H, Cogan A, Fraser A, Feng L, Palmer PI, et al. Methane observations from the Greenhouse Gases Observing Satellite: comparison to groundbased TCCON data and model calculations. Geophys Res Let 2011;38 (15):L15807. link1

[53] Reuter M, Bösch H, Bovensmann H, Bril A, Buchwitz M, Butz A, et al. A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: the ensemble median algorithm EMMA. Atmos Chem Phys 2013;13(4):1771–80. link1

[54] Schneising O, Bergamaschi P, Bovensmann H, Buchwitz M, Burrows JP, Deutscher NM, et al. Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results. Atmos Chem Phys 2012;12(3):1527–40. link1

[55] Schepers D, Guerlet S, Butz A, Landgraf J, Frankenberg C, Hasekamp O, et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: performance comparison of proxy and physics retrieval algorithms. J Geophys Res 2012;117(D10):D10307. link1

[56] Wunch D, Wennberg PO, Toon GC, Connor BJ, Fisher B, Osterman GB, et al. A method for evaluating bias in global measurements of CO2 total columns from space. Atmos Chem Phys 2011;11(23):12317–37. link1

[57] Basu S, Houweling S, Peters W, Sweeney C, Machida T, Maksyutov S, et al. The seasonal cycle amplitude of total column CO2: factors behind the model observation mismatch. J Geophys Res 2011;116(D23):D10307. link1

[58] Houweling S, Aben I, Breon FM, Chevallier F, Deutscher N, Engelen R, et al. The importance of transport model uncertainties for the estimation of CO2 sources and sinks using satellite measurements. Atmos Chem Phys 2010;10 (20):9981–92. link1

[59] Keppel-Aleks G, Randerson JT, Lindsay K, Stephens BB, Keith Moore J, Doney SC, et al. Atmospheric carbon dioxide variability in the community earth system model: evaluation and transient dynamics during the twentieth and twenty-first centuries. J Clim 2013;26(13):4447–75. link1

[60] Mu M, Randerson JT, van der Werf GR, Giglio L, Kasibhatla P, Morton D, et al. Daily and 3 hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. J Geophys Res 2011;116 (D24):D24303. link1

[61] Messerschmidt J, Parazoo N, Wunch D, Deutscher NM, Roehl C, Warneke T, et al. Evaluation of seasonal atmosphere–biosphere exchange estimations with TCCON measurements. Atmos Chem Phys 2013;13(10):5103–15. link1

[62] Wang W, Tian Y, Liu C, Sun Y, Liu W, Xie P, et al. Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmos Meas Tech 2017;10 (7):2627–43. link1

[63] Tian Y, Sun Y, Liu C, Wang W, Shan C, Xu X, et al. Characterisation of methane variability and trends from near-infrared solar spectra over Hefei, China. Atmos Environ 2018;173:198–209. link1

[64] Liu HY, Jacob DJ, Bey I, Yantosca RM, Duncan BN, Sachse GW. Transport pathways for Asian pollution outflow over the Pacific: interannual and seasonal variations. J Geophys Res Atmos 2003;108(D20):8786. link1

[65] Geibel MC, Gerbig C, Feist DG. A new fully automated FTIR system for total column measurements of greenhouse gases. Atmos Meas Tech 2010;3 (5):1363–75. link1

[66] Sun Y, Liu C, Chan K, Wang W, Shan C, Hu Q, et al. The influence of instrumental line shape degradation on the partial columns of O3, CO, CH4 and N2O derived from high-resolution FTIR spectrometry. Remote Sens 2018;10 (12):2041. link1

[67] Yin H, Sun YW, Liu C, Wang W, Shan C, Zha L, et al. Remote sensing of atmospheric hydrogen fluoride (HF) over Hefei, China with ground-based high-resolution Fourier transform infrared (FTIR) spectrometry. Remote Sens 2021;13(4):791. link1

[68] Rodgers CD. Inverse methods for atmospheric sounding-theory and practice. Singapore: World Scientific Publishing Co., Pte, Ltd.; 2000. link1

[69] Dammers E, Vigouroux C, Palm M, Mahieu E, Warneke T, Smale D, et al. Retrieval of ammonia from ground-based FTIR solar spectra. Atmos Chem Phys 2015;15(22):12789–803. link1

[70] Vigouroux C, Bauer Aquino CA, Bauwens M, Becker C, Blumenstock T, De Mazière M, et al. NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. Atmos Meas Tech 2018;11(9):5049–73. link1

[71] Yin H, Sun Y, Liu C, Zhang L, Lu X, Wang W, et al. FTIR time series of stratospheric NO2 over Hefei, China, and comparisons with OMI and GEOSChem model data. Opt Express 2019;27(16):A1225–40. link1

[72] Hase F. Improved instrumental line shape monitoring for the groundbased, high-resolution FTIR spectrometers of the network for the detection of atmospheric composition change. Atmos Meas Tech 2012;5 (3):603–10. link1

[73] Sun Y, Palm M, Liu C, Hase F, Griffith D, Weinzierl C, et al. The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile. Atmos Meas Tech 2018;11(5):2879–96. link1

[74] Pougatchev NS, Connor BJ, Rinsland CP. Infrared measurements of the ozone vertical-distribution above Kitt Peak. J Geophys Res Atmos 1995;100 (D8):16689–97. link1

[75] Sun Y, Palm M, Weinzierl C, Petri C, Notholt J, Wang Y, et al. Technical note: sensitivity of instrumental line shape monitoring for the ground-based highresolution FTIR spectrometer with respect to different optical attenuators. Atmos Meas Tech 2017;10(3):989–97. link1

[76] Shan C, Wang W, Liu C, Sun Y, Hu Q, Xu X, et al. Regional CO emission estimated from ground-based remote sensing at Hefei site, China. Atmos Res 2019;222:25–35. link1

[77] Hedelius JK, He TL, Jones DBA, Baier BC, Buchholz RR, De Mazière M, et al. Evaluation of MOPITT Version 7 joint TIR–NIR XCO retrievals with TCCON. Atmos Meas Tech 2019;12(10):5547–72. link1

[78] Yin H, Sun Y, Liu C, Lu X, Smale D, Blumenstock T, et al. Ground-based FTIR observation of hydrogen chloride (HCl) over Hefei, China, and comparisons with GEOS-Chem model data and other ground-based FTIR stations data. Opt Express 2020;28(6):8041–55. link1

[79] Oshio H, Yoshida Y, Matsunaga T, Deutscher NM, Dubey M, Griffith DWT, et al. Bias correction of the ratio of total column CH4 to CO2 retrieved from GOSAT spectra. Remote Sens 2020;12(19):3155. link1

[80] Shan C, Wang W, Liu C, Guo Y, Xie Y, Sun Y, et al. Retrieval of vertical profiles and tropospheric CO2 columns based on high-resolution FTIR over Hefei. China. Opt Express 2021;29(4):4958–77. link1

[81] Shan C, Zhang H, Wang W, Liu C, Xie Y, Hu Q, et al. Retrieval of stratospheric HNO3 and HCl based on ground-based high-resolution Fourier transform spectroscopy. Remote Sens 2021;13(11):2159. link1

[82] Vigouroux C, Blumenstock T, Coffey M, Errera Q, García O, Jones NB, et al. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmos Chem Phys 2015;15(6):2915–33. link1

[83] Yoshida Y, Kikuchi N, Morino I, Uchino O, Oshchepkov S, Bril A, et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos Meas Tech 2013;6(6):1533–47. link1

[84] Rodgers CD, Connor BJ. Intercomparison of remote sounding instruments. J Geophys Res Atmos 2003;108(D3):4116. link1

[85] Gisi M, Hase F, Dohe S, Blumenstock T, Simon A, Keens A. XCO2 -measurements with a tabletop FTS using solar absorption spectroscopy. Atmos Meas Tech 2012;5(11):2969–80. link1

Related Research