Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2021.11.025

Biomaterial-Related Cell Microenvironment in Tissue Engineering and Regenerative Medicine

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China

Received: 2021-05-31 Revised: 2021-09-18 Accepted: 2021-11-10 Available online: 2022-03-17

Next Previous

Abstract

An appropriate cell microenvironment is key to tissue engineering and regenerative medicine. Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology, biomaterials, tissue engineering, and regenerative medicine. The cell microenvironment consists of not only its surrounding cells and soluble factors, but also its extracellular matrix (ECM) or nearby external biomaterials in tissue engineering and regeneration. This review focuses on six aspects of biomaterial-related cell microenvironments: ① chemical composition of materials, ② material dimensions and architecture, ③material-controlled cell geometry, ④effects of material charges on cells, ⑤ matrix stiffness and biomechanical microenvironment, and ⑥ surface modification of materials. The present challenges in tissue engineering are also mentioned, and eight perspectives are predicted.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Viola J, Lal B, Grad O. The emergence of tissue engineering as a research field. Arlington: The National Science Foundation; 2003. link1

[ 2 ] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–6. link1

[ 3 ] Williams D, Zhang XD, editors. Definitions of biomaterials for the twenty-first century. Amsterdam: Elsevier; 2019. link1

[ 4 ] Chen J, Wang C, Lü S, Wu J, Guo X, Duan C, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res 2005;319(3):429–38. link1

[ 5 ] Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29 (20):2941–53. link1

[ 6 ] Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009;324(5935):1673–7. link1

[ 7 ] Williams DF. On the nature of biomaterials. Biomaterials 2009;30 (30):5897–909. link1

[ 8 ] Yao X, Peng R, Ding J. Cell–material interactions revealed via material techniques of surface patterning. Adv Mater 2013;25(37):5257–86. link1

[ 9 ] Liu X, Wang S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem Soc Rev 2014;43(8):2385–401. link1

[10] Khalil AS, Xie AW, Murphy WL. Context clues: the importance of stem cell– material interactions. ACS Chem Biol 2014;9(1):45–56. link1

[11] Dhowre HS, Rajput S, Russell NA, Zelzer M. Responsive cell–material interfaces. Nanomedicine 2015;10(5):849–71. link1

[12] Gu XS. Tissue engineering is under way. Engineering 2017;3(1):2. link1

[13] Li X, Zhang Q, Yan S, Li M, You R. Topographic cues reveal filopodia-mediated cell locomotion in 3D microenvironment. Biointerphases 2020;15(3):031001. link1

[14] Malcor JD, Hunter EJ, Davidenko N, Bax DV, Cameron R, Best S, et al. Collagen scaffolds functionalized with triple-helical peptides support 3D HUVEC culture. Regen Biomater 2020;7(5):471–82. link1

[15] Yang J, Xiao Y, Tang Z, Luo Z, Li D, Wang Q, et al. The negatively charged microenvironment of collagen hydrogels regulates the chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J Mater Chem B Mater Biol Med 2020;8(21):4680–93. link1

[16] Chen M, Liu Q, Xu Y, Wang Y, Han X, Wang Z, et al. The effect of LyPRP/collagen composite hydrogel on osteogenic differentiation of rBMSCs. Regen Biomater 2020;8(1):a053. link1

[17] Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006;367(9518):1241–6. link1

[18] Dewey MJ, Johnson EM, Slater ST, Milner DJ, Wheeler MB, Harley BAC. Mineralized collagen scaffolds fabricated with amniotic membrane matrix increase osteogenesis under inflammatory conditions. Regen Biomater 2020;7(3):247–58. link1

[19] Gao C, Qiu ZY, Hou JW, Tian W, Kou JM, Wang X. Clinical observation of mineralized collagen bone grafting after curettage of benign bone tumors. Regen Biomater 2020;7(6):567–75. link1

[20] He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater 2020;7(5):515–25. link1

[21] Gu L, Li T, Song X, Yang X, Li S, Chen L, et al. Preparation and characterization of methacrylated gelatin/bacterial cellulose composite hydrogels for cartilage tissue engineering. Regen Biomater 2020;7(2):195–202. link1

[22] Han ME, Kang BJ, Kim SH, Kim HD, Hwang NS. Gelatin-based extracellular matrix cryogels for cartilage tissue engineering. J Ind Eng Chem 2017;45:421–9. link1

[23] Rose JB, Pacelli S, Haj AJE, Dua HS, Hopkinson A, White LJ, et al. Gelatin-based materials in ocular tissue engineering. Materials 2014;7(4):3106–35. link1

[24] Santoro M, Tatara AM, Mikos AG. Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 2014;190:210–8. link1

[25] Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 2004;25(18):4273–8. link1

[26] Liang C, Ling Y, Wei F, Huang L, Li X. A novel antibacterial biomaterial mesh coated by chitosan and tigecycline for pelvic floor repair and its biological performance. Regen Biomater 2020;7(5):483–90. link1

[27] Kafi MA, Aktar K, Todo M, Dahiya R. Engineered chitosan for improved 3D tissue growth through Paxillin–FAK–ERK activation. Regen Biomater 2020;7 (2):141–51. link1

[28] Holland C, Numata K, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: past, present, future. Adv Healthc Mater 2019;8(1):e1800465. link1

[29] Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013;65(4):457–70. link1

[30] Ran J, Hu Y, Le H, Chen Y, Zheng Z, Chen X, et al. Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: a preliminary study. Acta Biomater 2017;53:307–17. link1

[31] Horiguchi I, Kino-oka M. Current developments in the stable production of human induced pluripotent stem cells. Engineering 2021;7(2):144–52. link1

[32] Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012;37(1):106–26. link1

[33] Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 2016;96:54–76. link1

[34] Duan P, Pan Z, Cao L, Gao J, Yao H, Liu X, et al. Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Translat 2019;19:68–80. link1

[35] Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, et al. Bilayered PLGA/PLGA–HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomater Sci Eng 2018;4(10):3506–21. link1

[36] Pan Z, Ding J. poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012;2(3):366–77. link1

[37] Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-coglycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 2014;15(3):3640–59. link1

[38] Yao Q, Cosme JGL, Xu T, Miszuk JM, Picciani PHS, Fong H, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017;115:115–27. link1

[39] Zhou G, Jiang H, Yin Z, Liu Y, Zhang Q, Zhang C, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 2018;28:287–302. link1

[40] Da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J 2018;340:9–14. link1

[41] Yu X, Mengsteab PY, Narayanan G, Nair LS, Laurencin CT. Enhancing the surface properties of a bioengineered anterior cruciate ligament matrix for use with point-of-care stem cell therapy. Engineering 2021;7(2):153–61. link1

[42] Cao Y, Cheng P, Sang S, Xiang C, An Y, Wei X, et al. Mesenchymal stem cells loaded on 3D-printed gradient poly(e-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regen Biomater 2021;8 (3):b019. link1

[43] Ogueri KS, Allcock HR, Laurencin CT. Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly(lacticco-glycolic acid). Prog Polym Sci 2019;98:98. link1

[44] Ogueri KS, Ogueri KS, Allcock HR, Laurencin CT. Polyphosphazene polymers: the next generation of biomaterials for regenerative engineering and therapeutic drug delivery. J Vac Sci Technol B Nanotechnol Microelectron 2020;38(3):030801. link1

[45] Huang D, Zhao F, Gao W, Chen X, Guo Z, Zhang W. Strontium-substituted submicron bioactive glasses inhibit ostoclastogenesis through suppression of RANKL-induced signaling pathway. Regen Biomater 2020;7(3):303–11. link1

[46] Hench LL. The story of bioglass (R). J Mater Sci; Mater M 2006;17(11):967–78. link1

[47] Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32(11):2757–74. link1

[48] Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9(1):4457–86. link1

[49] Chen Y, Huang J, Liu J, Wei Y, Yang X, Lei L, et al. Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair. Regen Biomater 2021;8(2):b007. link1

[50] Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Effect of sintered silicatesubstituted hydroxyapatite on remodelling processes at the bone-implant interface. Biomaterials 2004;25(16):3303–14. link1

[51] Zhou J, Xu C, Wu G, Cao X, Zhang L, Zhai Z, et al. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomater 2011;7 (11):3999–4006. link1

[52] Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001;344(5):385–6. link1

[53] Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, et al. Enhancing the bioactivity of poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomed 2013;8:1855–65. link1

[54] Calabrese G, Petralia S, Fabbi C, Forte S, Franco D, Guglielmino S, et al. Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration. Regen Biomater 2020;7(5):461–9. link1

[55] Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 1996;17(22):2131–7. link1

[56] Yuan H, Yang Z, De Bruij JD, De Groot K, Zhang X. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials 2001;22(19):2617–23. link1

[57] Wei J, Jia J, Wu F, Wei S, Zhou H, Zhang H, et al. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration. Biomaterials 2010;31(6):1260–9. link1

[58] Diao J, OuYang J, Deng T, Liu X, Feng Y, Zhao N, et al. 3D-plotted b-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv Healthc Mater 2018;7(17):e1800441. link1

[59] Li N, Zheng YF. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 2013;29(6):489–502. link1

[60] Su Y, Cockerill I, Wang Y, Qin YX, Chang L, Zheng Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol 2019;37 (4):428–41. link1

[61] Qi Y, Qi H, He Y, Lin W, Li P, Qin L, et al. Strategy of metal–polymer composite stent to accelerate biodegradation of iron-based biomaterials. ACS Appl Mater Interfaces 2018;10(1):182–92. link1

[62] Hou Z, Xiang M, Chen N, Cai X, Zhang B, Luo R, et al. The biological responses and mechanisms of endothelial cells to magnesium alloy. Regen Biomater 2021;8(3):b017. link1

[63] Jin Y, Lee JS, Kim J, Min S, Wi S, Yu JH, et al. Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng 2018;2(7):522–39. link1

[64] Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018;3(7):159–73. link1

[65] Ling Y, Xu W, Yang L, Liang C, Xu B. Improved the biocompatibility of cancellous bone with compound physicochemical decellularization process. Regen Biomater 2020;7(5):443–51. link1

[66] Syedain ZH, Graham ML, Dunn TB, O’Brien T, Johnson SL, Schumacher RJ, et al. A completely biological ‘‘off-the-shelf” arteriovenous graft that recellularizes in baboons. Sci Transl Med 2017;9(414):eaan4209. link1

[67] Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, et al. Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Transl Med 2019;11(485): eaau6934. link1

[68] Liu W, Sun Y, Dong X, Yin Q, Zhu H, Li S, et al. Cell-derived extracellular matrix-coated silk fibroin scaffold for cardiogenesis of brown adipose stem cells through modulation of TGF-b pathway. Regen Biomater 2020;7 (4):403–12. link1

[69] Xu X, Gao J, Liu S, Chen L, Chen M, Yu X, et al. Magnetic resonance imaging for non-invasive clinical evaluation of normal and regenerated cartilage. Regen Biomater 2021;8(5):rbab038. link1

[70] Dong QS, Shang HT, Wu W, Chen FL, Zhang JR, Guo JP, et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model. Mater Sci Eng C 2012;32(6):1536–41. link1

[71] Green DW, Ben-Nissan B, Yoon KS, Milthorpe B, Jung HS. Natural and synthetic coral biomineralization for human bone revitalization. Trends Biotechnol 2017;35(1):43–54. link1

[72] Li R, Xu Z, Jiang Q, Zheng Y, Chen Z, Chen X. Characterization and biological evaluation of a novel silver nanoparticle-loaded collagen–chitosan dressing. Regen Biomater 2020;7(4):371–80. link1

[73] Luo K, Jiang G, Zhu J, Lu B, Lu J, Zhang K, et al. Poly(methyl methacrylate) bone cement composited with mineralized collagen for osteoporotic vertebral compression fractures in extremely old patients. Regen Biomater 2020;7 (1):29–34. link1

[74] Juhasz JA, Best SM, Bonfield W. Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci Technol Adv Mater 2010;11(1):014103. link1

[75] Cao L, Werkmeister JA, Wang J, Glattauer V, McLean KM, Liu C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials 2014;35(9):2730–42. link1

[76] Dai Y, Han XH, Hu LH, Wu HW, Huang SY, Lü YP. Efficacy of concentrated growth factors combined with mineralized collagen on quality of life and bone reconstruction of guided bone regeneration. Regen Biomater 2020;7 (3):313–20. link1

[77] Choi E, Kim D, Kang D, Yang GH, Jung B, Yeo M, et al. 3D-printed gelatin methacrylate (GelMA)/silanated silica scaffold assisted by two-stage cooling system for hard tissue regeneration. Regen Biomater 2021;8(2):b001. link1

[78] Yang R, Li G, Zhuang C, Yu P, Ye T, Zhang Y, et al. Gradient bimetallic ionbased hydrogels for tissue microstructure reconstruction of tendon-to-bone insertion. Sci Adv 2021;7(26):eabg3816. link1

[79] Yuan J, Hou Q, Chen D, Zhong L, Dai X, Zhu Z, et al. Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Sci China Life Sci 2020;63(4):552–62. link1

[80] Qi Y, Li X, He Y, Zhang D, Ding J. Mechanism of acceleration of iron corrosion by a polylactide coating. ACS Appl Mater Interfaces 2019;11(1):202–18. link1

[81] Li X, Zhang W, Lin W, Qiu H, Qi Y, Ma X, et al. Long-term efficacy of biodegradable metal–polymer composite stents after the first and the second implantations into porcine coronary arteries. ACS Appl Mater Interfaces 2020;12(13):15703–15. link1

[82] Lin W, Zhang H, Zhang W, Qi H, Zhang G, Qian J, et al. In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater 2020;6 (4):1028–39. link1

[83] Hogan BLM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996;10(13):1580–94. link1

[84] Lian H, Wang H, Han Q, Wang C. Quantification of rhBMP2 in bioactive bone materials. Regen Biomater 2020;7(1):71–5. link1

[85] Liu K, Meng CX, Lv ZY, Zhang YJ, Li J, Li KY, et al. Enhancement of BMP-2 and VEGF carried by mineralized collagen for mandibular bone regeneration. Regen Biomater 2020;7(4):435–40. link1

[86] Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 2009;30(11):2122–31. link1

[87] Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011;8(55):153–70. link1

[88] Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet 2001;358(9287):1067–8. link1

[89] Zhang Z, Lai Y, Yu L, Ding J. Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. Biomaterials 2010;31(31):7873–82. link1

[90] Huang JH, Ding JD. Nanostructured interfaces with RGD arrays to control cell– matrix interaction. Soft Matter 2010;6(15):3395–401. link1

[91] Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, et al. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med 2010;2(45):45ra60. link1

[92] Wang F, Li Y, Shen Y, Wang A, Wang S, Xie T. The functions and applications of RGD in tumor therapy and tissue engineering. Int J Mol Sci 2013;14 (7):13447–62. link1

[93] Rong Y, Zhang Z, He CL, Chen XS. Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells. Sci China Chem 2020;63(8):1100–11. link1

[94] Zheng S, Liu Q, He J, Wang X, Ye K, Wang X, et al. Critical adhesion areas of cells on micro-nanopatterns. Nano Res 2021:1–13. link1

[95] Liu Q, Zheng S, Ye K, He J, Shen Y, Cui S, et al. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials 2020;263:120327. link1

[96] He J, Liu Q, Zheng S, Shen R, Wang X, Gao J, et al. Enlargement, reduction, and even reversal of relative migration speeds of endothelial and smooth muscle cells on biomaterials simply by adjusting RGD nanospacing. ACS Appl Mater Interfaces 2021;13(36):42344–56. link1

[97] Wang X, Li S, Yan C, Liu P, Ding J. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett 2015;15 (3):1457–67. link1

[98] Li Z, Cao B, Wang X, Ye K, Li S, Ding J. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. J Mater Chem B Mater Biol Med 2015;3(26):5197–209. link1

[99] Pistone A, Iannazzo D, Espro C, Galvagno S, Tampieri A, Montesi M, et al. Tethering of Gly–Arg–Gly–Asp–Ser–Pro–Lys peptides on Mg-doped hydroxyapatite. Engineering 2017;3(1):55–9. link1

[100] Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, et al. Molecular selfassembly and applications of designer peptide amphiphiles. Chem Soc Rev 2010;39(9):3480–98. link1

[101] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494–8. link1

[102] Andersen MO, Le DQS, Chen MW, Nygaard JV, Kassem M, Bunger C, et al. Spatially controlled delivery of siRNAs to stem cells in implants generated by multi-component additive manufacturing. Adv Funct Mater 2013;23 (45):5599–607. link1

[103] Fu Z, Zhang X, Zhou X, Ur-Rehman U, Yu M, Liang H, et al. In vivo selfassembled small RNAs as a new generation of RNAi therapeutics. Cell Res 2021;31(6):631–48. link1

[104] Ma Y, Zheng W, Chen H, Shao X, Lin P, Liu X, et al. Glucosamine promotes chondrocyte proliferation via the Wnt/b catenin signaling pathway. Int J Mol Med 2018;42(1):61–70. link1

[105] Holden P, Nair LS. Deferoxamine: an angiogenic and antioxidant molecule for tissue regeneration. Tissue Eng Part B Rev 2019;25(6):461–70. link1

[106] Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, et al. In vitro and in vivo degradation of porous poly(D, L-lactic-co-glycolic acid) foams. Biomaterials 2000;21(18):1837–45. link1

[107] Morgan KY, Sklaviadis D, Tochka ZL, Fischer KM, Hearon K, Morgan TD, et al. Multi-material tissue engineering scaffold with hierarchical pore architecture. Adv Funct Mater 2016;26(32):5873–83. link1

[108] Pham QP, Sharma U, Mikos AG. Electrospun poly(e-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 2006;7 (10):2796–805. link1

[109] Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006;12(5):1197–211. link1

[110] Saraf A, Lozier G, Haesslein A, Kasper FK, Raphael RM, Baggett LS, et al. Fabrication of nonwoven coaxial fiber meshes by electrospinning. Tissue Eng Part C Methods 2009;15(3):333–44. link1

[111] Whang K, Thomas CH, Healy KE, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer 1995;36(4):837–42. link1

[112] Wu L, Zhang H, Zhang J, Ding J. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Tissue Eng 2005;11(7-8):1105–14. link1

[113] Jing D, Wu L, Ding J. Solvent-assisted room-temperature compression molding approach to fabricate porous scaffolds for tissue engineering. Macromol Biosci 2006;6(9):747–57. link1

[114] Wu L, Jing D, Ding J. A ‘‘room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 2006;27(2):185–91. link1

[115] Chen H, Fei F, Li X, Nie Z, Zhou D, Liu L, et al. A facile, versatile hydrogel bioink for 3D bioprinting benefits long-term subaqueous fidelity, cell viability and proliferation. Regen Biomater 2021;8(3):b026. link1

[116] Liang X, Gao J, Xu W, Wang X, Shen Y, Tang J, et al. Structural mechanics of 3D-printed poly(lactic acid) scaffolds with tetragonal, hexagonal and wheellike designs. Biofabrication 2019;11(3):035009. link1

[117] Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, et al. Bioinspired trimodal macro/ micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 2016;32:309–23. link1

[118] Duan P, Pan Z, Cao L, He Y, Wang H, Qu Z, et al. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J Biomed Mater Res A 2014;102(1):180–92. link1

[119] Pan Z, Duan P, Liu X, Wang H, Cao L, He Y, et al. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater 2015;2(1):9–19. link1

[120] Kruyt MC, de Bruijn JD, Wilson CE, Oner FC, van Blitterswijk CA, Verbout AJ, et al. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Tissue Eng 2003;9(2):327–36. link1

[121] Gao J, Ding X, Yu X, Chen X, Zhang X, Cui S, et al. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3Dprinting using nascent physical hydrogel as ink. Adv Healthc Mater 2021;10(3):e2001404. link1

[122] Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 1999;10(2):111–20. link1

[123] Liang XY, Qi YL, Pan Z, He Y, Liu XN, Cui SQ, et al. Design and preparation of quasi-spherical salt particles as water-soluble porogens to fabricate hydrophobic porous scaffolds for tissue engineering and tissue regeneration. Mater Chem Front 2018;2(8):1539–53. link1

[124] Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 2001;7(1):23–33. link1

[125] Zhang JC, Wu LB, Jing DY, Ding JD. A comparative study of porous scaffolds with cubic and spherical macropores. Polymer 2005;46(13):4979–85. link1

[126] Zhang JC, Zhang H, Wu LB, Ding JD. Fabrication of three dimensional polymeric scaffolds with spherical pores. J Mater Sci 2006;41(6):1725–31. link1

[127] Li X, van Blitterswijk CA, Feng Q, Cui F, Watari F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 2008;29(23):3306–16. link1

[128] Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, et al. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun 2018;9(1):4430. link1

[129] Alsaykhan H, Paxton JZ. Investigating materials and orientation parameters for the creation of a 3D musculoskeletal interface co-culture model. Regen Biomater 2020;7(4):413–25. link1

[130] Zhu W, Ding JD. Synthesis and characterization of a redox-initiated, injectable, biodegradable hydrogel. J Appl Polym Sci 2006;99(5):2375–83. link1

[131] Perale G, Veglianese P, Rossi F, Peviani M, Santoro M, Llupi D, et al. In situ agar–carbomer hydrogel polycondensation: a chemical approach to regenerative medicine. Mater Lett 2011;65(11):1688–92. link1

[132] Wang D, Yang X, Liu Q, Yu L, Ding J. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J Mater Chem B Mater Biol Med 2018;6 (38):6067–79. link1

[133] Dehghan-Baniani D, Chen Y, Wang D, Bagheri R, Solouk A, Wu H. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf B Biointerfaces 2020;192:111059. link1

[134] Yu L, Zhang H, Ding J. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew Chem Int Ed Engl 2006;45(14):2232–5. link1

[135] Yu L, Chang GT, Zhang H, Ding JD. Temperature-induced spontaneous sol–gel transitions of poly(D, L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)- b-poly(D, L-lactic acid-co-glycolic acid) triblock copolymers and their endcapped derivatives in water. J Polym Sci A Polym Chem 2007;45(6):1122–33. link1

[136] Zhang H, Yu L, Ding JD. Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water. Macromolecules 2008;41(17):6493–9. link1

[137] Chang GT, Yu L, Yang ZG, Ding JD. A delicate ionizable-group effect on selfassembly and thermogelling of amphiphilic block copolymers in water. Polymer 2009;50(25):6111–20. link1

[138] Chen L, Ci TY, Li T, Yu L, Ding JD. Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol gel transition in water. Macromolecules 2014;47 (17):5895–903. link1

[139] Ni P, Ding Q, Fan M, Liao J, Qian Z, Luo J, et al. Injectable thermosensitive PEG– PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials 2014;35(1):236–48. link1

[140] Chen L, Ci TY, Yu L, Ding JD. Effects of molecular weight and its distribution of PEG block on micellization and thermogellability of PLGA–PEG–PLGA copolymer aqueous solutions. Macromolecules 2015;48(11):3662–71. link1

[141] Cui SQ, Yu L, Ding JD. Semi-bald micelles and corresponding percolated micelle networks of thermogels. Macromolecules 2018;51(16):6405–20. link1

[142] Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, et al. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl Mater Interfaces 2018;10(36):30235–46. link1

[143] Cui SQ, Yu L, Ding JD. Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polym Sin 2018;8:997–1015. link1

[144] Cui SQ, Yu L, Ding JD. Thermogelling of amphiphilic block copolymers in water: ABA type versus AB or BAB type. Macromolecules 2019;52 (10):3697–715. link1

[145] Xu WK, Tang JY, Yuan Z, Cai CY, Chen XB, Cui SQ, et al. Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA–PEG–PLGA thermogel dressing. Chin J Polym Sci 2019;37(6):548–59. link1

[146] Cui SQ, Chen L, Yu L, Ding JD. Synergism among polydispersed amphiphilic block copolymers leading to spontaneous physical hydrogelation upon heating. Macromolecules 2020;53(18):7726–39. link1

[147] Wu K, Yu L, Ding J. Synthesis of PCL–PEG–PCL triblock copolymer via organocatalytic ring-opening polymerization and its application as an injectable hydrogel—an interdisciplinary learning trial. J Chem Educ 2020;97(11):4158–65. link1

[148] Cui S, Yu L, Ding J. Strategy of ‘‘Block Blends” to generate polymeric thermogels versus that of one-component block copolymer. Macromolecules 2020;53(24):11051–64. link1

[149] Cui S, Wei Y, Bian Q, Zhu Y, Chen X, Zhuang Y, et al. Injectable thermogel generated by the ‘‘Block Blend” strategy as a biomaterial for endoscopic submucosal dissection. ACS Appl Mater Interfaces 2021;13(17):19778–92. link1

[150] Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 2021;128:42–59. link1

[151] Wang YB, Yu L, Ding JD. Progress of amphiphilic copolymers thermogels. Chin Sci Bull 2021;65:1–15. Chinese. link1

[152] Cao DL, Chen X, Cao F, Guo W, Tang JY, Cai CY, et al. An intelligent transdermal formulation of ALA-loaded copolymer thermogel with spontaneous asymmetry by using temperature-induced sol–gel transition and gel–sol (suspension) transition on different sides. Adv Funct Mater 2021;31(22):2100349. link1

[153] Wu X, Wang X, Chen X, Yang X, Ma Q, Xu G, et al. Injectable and thermosensitive hydrogels mediating a universal macromolecular contrast agent with radiopacity for noninvasive imaging of deep tissues. Bioact Mater 2021;6(12):4717–28. link1

[154] Wu K, Chen X, Gu S, Cui S, Yang X, Yu L, et al. Decisive influence of hydrophobic side chains of polyesters on thermoinduced gelation of triblock copolymer aqueous solutions. Macromolecules 2021;54(16):7421–33. link1

[155] Ajovalasit A, Redondo-Gómez C, Sabatino MA, Okesola BO, Braun K, Mata A, et al. Carboxylated-xyloglucan and peptide amphiphile co-assembly in wound healing. Regen Biomater 2021;8(5):b040. link1

[156] Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev 2008;37(8):1473–81. link1

[157] Yu L, Chang GT, Zhang H, Ding JD. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm 2008;348(1–2):95–106. link1

[158] Yu L, Zhang Z, Zhang H, Ding J. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 2009;10(6):1547–53. link1

[159] Chang G, Ci T, Yu L, Ding J. Enhancement of the fraction of the active form of an antitumor drug topotecan via an injectable hydrogel. J Control Release 2011;156(1):21–7. link1

[160] Ci T, Li T, Chang G, Yu L, Ding J. Simply mixing with poly(ethylene glycol) enhances the fraction of the active chemical form of antitumor drugs of camptothecin family. J Control Release 2013;169(3):329–35. link1

[161] Li K, Yu L, Liu X, Chen C, Chen Q, Ding J. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013;34(11):2834–42. link1

[162] Yu L, Xu W, Shen W, Cao L, Liu Y, Li Z, et al. Poly(lactic acid-co-glycolic acid)– poly(ethylene glycol)–poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection. Acta Biomater 2014;10(3):1251–8. link1

[163] Cao L, Li Q, Zhang C, Wu H, Yao L, Xu M, et al. Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel. ACS Biomater Sci Eng 2016;2(3):393–402. link1

[164] Chen L, Li XQ, Cao LP, Li XL, Meng JR, Dong J, et al. An injectable hydrogel with or without drugs for prevention of epidural scar adhesion after laminectomy in rats. Chin J Polym Sci 2016;34(2):147–63. link1

[165] Li X, Chen L, Lin H, Cao L, Cheng J, Dong J, et al. Efficacy of poly(D, L-lactic acid-co-glycolic acid)–poly(ethylene flycol)–poly(D, L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model. Clin Spine Surg 2017;30(3):E283–90. link1

[166] Chen X, Wang M, Yang X, Wang Y, Yu L, Sun J, et al. Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+ breast cancer after breast-conserving surgery. Theranostics 2019;9(21):6080–98. link1

[167] Zhuang Y, Yang X, Li Y, Chen Y, Peng X, Yu L, et al. Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Appl Mater Interfaces 2019;11(33):29604–18. link1

[168] Yang XW, Chen XB, Wang YB, Xu GH, Yu L, Ding JD. Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy. Chem Eng J 2020;396:125320. link1

[169] Zhao CC, Zhu L, Wu Z, Yang R, Xu N, Liang L. Resveratrol-loaded peptidehydrogels inhibit scar formation in wound healing through suppressing inflammation. Regen Biomater 2020;7(1):99–107. link1

[170] Yan W, Xu X, Xu Q, Sun Z, Jiang Q, Shi D. Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6- month follow-up. Regen Biomater 2020;7(1):77–90. link1

[171] Cai H, Wang P, Xu Y, Yao Y, Liu J, Li T, et al. BMSCs-assisted injectable Col I hydrogel-regenerated cartilage defect by reconstructing superficial and calcified cartilage. Regen Biomater 2020;7(1):35–45. link1

[172] Pérez-Herrero E, García-García P, Gómez-Morales J, Llabrés M, Delgado A, Évora C. New injectable two-step forming hydrogel for delivery of bioactive substances in tissue regeneration. Regen Biomater 2019;6(3):149–62. link1

[173] Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, et al. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 2019;6 (3):129–40. link1

[174] Holyoak DT, Wheeler TA, van der Meulen MCH, Singh A. Injectable mechanical pillows for attenuation of load-induced post-traumatic osteoarthritis. Regen Biomater 2019;6(4):211–9. link1

[175] D’Amora U, Ronca A, Raucci MG, Dozio SM, Lin H, Fan Y, et al. In situ sol–gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogels. Regen Biomater 2019;6(5):249–58. link1

[176] Cipriani F, Ariño Palao B, Gonzalez de Torre I, Vega Castrillo A, Aguado Hernández HJ, Alonso Rodrigo M, et al. An elastin-like recombinamer-based bioactive hydrogel embedded with mesenchymal stromal cells as an injectable scaffold for osteochondral repair. Regen Biomater 2019;6 (6):335–47. link1

[177] Zhao ZY, Wang Z, Li G, Cai ZW, Wu JZ, Wang L, et al. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv Funct Mater 2021;31 (31):2103339. link1

[178] Sohier J, Corre P, Weiss P, Layrolle P. Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 2010;6(8):2932–9. link1

[179] Cao L, Cao B, Lu C, Wang G, Yu L, Ding J. An injectable hydrogel formed by in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B Mater Biol Med 2015;3(7):1268–80. link1

[180] Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogelbased scaffolds to repair bone tissue: how to create a physiologically relevant micro-environment? J Tissue Eng 2017;8:1–26. link1

[181] Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276(5317):1425–8. link1

[182] Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials 1999;20(23– 24):2363–76. link1

[183] Falconnet D, Csucs G, Grandin HM, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006;27 (16):3044–63. link1

[184] Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 2010;123(Pt 24):4201–13. link1

[185] Liu P, Sun J, Huang J, Peng R, Tang J, Ding J. Fabrication of micropatterns of nanoarrays on a polymeric gel surface. Nanoscale 2010;2(1):122–7. link1

[186] Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021;126:92–108. link1

[187] Graeter SV, Huang J, Perschmann N, López-García M, Kessler H, Ding J, et al. Mimicking cellular environments by nanostructured soft interfaces. Nano Lett 2007;7(5):1413–8. link1

[188] Sun J, Graeter SV, Yu L, Duan S, Spatz JP, Ding J. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesionavailable inorganic microarray. Biomacromolecules 2008;9(10):2569–72. link1

[189] Huang J, Grater SV, Corbellini F, Rinck S, Bock E, Kemkemer R, et al. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett 2009;9 (3):1111–6. link1

[190] Sun JG, Tang J, Ding JD. Cell orientation on a stripe-micropatterned surface. Chin Sci Bull 2009;54(18):3154–9. link1

[191] Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 2011;32(32):8048–57. link1

[192] Peng R, Yao X, Cao B, Tang J, Ding J. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces. Biomaterials 2012;33(26):6008–19. link1

[193] Yao X, Peng R, Ding J. Effects of aspect ratios of stem cells on lineage commitments with and without induction media. Biomaterials 2013;34 (4):930–9. link1

[194] He J, Sun C, Gu Z, Yang Y, Gu M, Xue C, et al. Morphology, migration, and transcriptome analysis of Schwann cell culture on butterfly wings with different surface architectures. ACS Nano 2018;12(10):9660–8. link1

[195] Tang J, Peng R, Ding J. The regulation of stem cell differentiation by cell–cell contact on micropatterned material surfaces. Biomaterials 2010;31 (9):2470–6. link1

[196] Yan C, Sun J, Ding J. Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 2011;32(16):3931–8. link1

[197] Yao X, Hu Y, Cao B, Peng R, Ding J. Effects of surface molecular chirality on adhesion and differentiation of stem cells. Biomaterials 2013;34(36):9001–9. link1

[198] He Y, Wang X, Chen L, Ding J. Preparation of hydroxyapatite micropatterns for the study of cell–biomaterial interactions. J Mater Chem B Mater Biol Med 2014;2(16):2220–7. link1

[199] Sun JG, Graeter SV, Tang J, Huang JH, Liu P, Lai YX, et al. Preparation of stable micropatterns of gold on cell-adhesion-resistant hydrogels assisted by a hetero-bifunctional macromonomer linker. Sci China Chem 2014;57 (4):645–53. link1

[200] Cao B, Peng R, Li Z, Ding J. Effects of spreading areas and aspect ratios of single cells on dedifferentiation of chondrocytes. Biomaterials 2014;35 (25):6871–81. link1

[201] Hu YW, Yao X, Liu Q, Wang Y, Liu RL, Cui SQ, et al. Left–right symmetry or asymmetry of cells on stripe-like micropatterned material surfaces. Chin J Chem 2018;36(7):605–11. link1

[202] Yao X, Liu R, Liang X, Ding J. Critical areas of proliferation of single cells on micropatterned surfaces and corresponding cell type dependence. ACS Appl Mater Interfaces 2019;11(17):15366–80. link1

[203] Yao X, Ding J. Effects of microstripe geometry on guided cell migration. ACS Appl Mater Interfaces 2020;12(25):27971–83. link1

[204] Keselowsky BG, Collard DM, García AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA 2005;102(17):5953–7. link1

[205] Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 2006;27(27):4783–93. link1

[206] Benoit DSW, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 2008;7(10):816–23. link1

[207] Cao B, Peng Y, Liu X, Ding J. Effects of functional groups of materials on nonspecific adhesion and chondrogenic induction of mesenchymal stem cells on free and micropatterned surfaces. ACS Appl Mater Interfaces 2017;9 (28):23574–85. link1

[208] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–89. link1

[209] Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J 2008;95(9):4426–38. link1

[210] Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139–43. link1

[211] Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 2012;11 (7):642–9. link1

[212] Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 2014;13(10):979–87. link1

[213] Ye K, Wang X, Cao L, Li S, Li Z, Yu L, et al. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett 2015;15(7):4720–9. link1

[214] Ye K, Cao L, Li S, Yu L, Ding J. Interplay of matrix stiffness and cell–cell contact in regulating differentiation of stem cells. ACS Appl Mater Interfaces 2016;8 (34):21903–13. link1

[215] Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 2010;7(9):733–6. link1

[216] Liverani E, Rogati G, Pagani S, Brogini S, Fortunato A, Caravaggi P. Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants. J Mech Behav Biomed 2021;121:1–7. link1

[217] Moshayedi P, Ng G, Kwok JCF, Yeo GSH, Bryant CE, Fawcett JW, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 2014;35(13):3919–25. link1

[218] Prager J, Adams CF, Delaney AM, Chanoit G, Tarlton JF, Wong LF, et al. Stiffness-matched biomaterial implants for cell delivery: clinical, intraoperative ultrasound elastography provides a ‘target’ stiffness for hydrogel synthesis in spinal cord injury. J Tissue Eng 2020;11:2041731420934806. link1

[219] Li S, Wang X, Cao B, Ye K, Li Z, Ding J. Effects of nanoscale spatial arrangement of arginine–glycine–aspartate peptides on dedifferentiation of chondrocytes. Nano Lett 2015;15(11):7755–65. link1

[220] Wang X, Yan C, Ye K, He Y, Li Z, Ding J. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials 2013;34(12):2865–74. link1

[221] Salber J, Gräter S, Harwardt M, Hofmann M, Klee D, Dujic J, et al. Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human-skin keratinocytes and fibroblasts on deformable substrates. Small 2007;3(6):1023–31. link1

[222] Lai Y, Xie C, Zhang Z, Lu W, Ding J. Design and synthesis of a potent peptide containing both specific and non-specific cell-adhesion motifs. Biomaterials 2010;31(18):4809–17. link1

[223] Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Encapsulation of cell-adhesive RGD peptides into a polymeric physical hydrogel to prevent postoperative tissue adhesion. J Biomed Mater Res B Appl Biomater 2012;100(6):1599–609. link1

[224] Wang X, Ye K, Li Z, Yan C, Ding J. Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis 2013;9(4):280–6. link1

[225] Bai L, Zhao J, Wang M, Feng Y, Ding J. Matrix-metalloproteinase-responsive gene delivery surface for enhanced in situ endothelialization. ACS Appl Mater Interfaces 2020;12(36):40121–32. link1

[226] Zhao P, Li X, Fang Q, Wang F, Ao Q, Wang X, et al. Surface modification of small intestine submucosa in tissue engineering. Regen Biomater 2020;7 (4):339–48. link1

[227] Xie Y, Hu C, Feng Y, Li D, Ai T, Huang Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater 2020;7(3):233–45. link1

[228] Onak G, Karaman O. Accelerated mineralization on nanofibers via nonthermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen Biomater 2019;6(4):231–40. link1

[229] Zhou L, Li X, Wang K, Shen F, Zhang L, Li P, et al. Cu2+-loaded polydopamine coatings with in situ nitric oxide generation function for improved hemocompatibility. Regen Biomater 2020;7(2):153–60. link1

[230] Ding L, Han S, Wang K, Zheng S, Zheng W, Peng X, et al. Remineralization of enamel caries by an amelogenin-derived peptide and fluoride in vitro. Regen Biomater 2020;7(3):283–92. link1

[231] Fu X, Zhou X, Liu P, Chen H, Xiao Z, Yuan B, et al. The optimized preparation of HA/L–TiO2/D–TiO2 composite coating on porous titanium and its effect on the behavior osteoblasts. Regen Biomater 2020;7(5):505–14. link1

[232] Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, et al. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021;8(2):b013. link1

[233] Zhang FM, Chang J, Lu JX, Ning CQ. Surface modification of beta-tricalcium phosphate scaffolds with topological nanoapatite coatings. Mat Sci Eng C-Bio S 2008;28(8):1330–9. link1

[234] Qu ZH, Ding JD. Sugar-fiber imprinting to generate microgrooves on polymeric film surfaces for contact guidance of cells. Chin J Chem 2012;30 (10):2292–6. link1

[235] Pan Z, Yan C, Peng R, Zhao Y, He Y, Ding J. Control of cell nucleus shapes via micropillar patterns. Biomaterials 2012;33(6):1730–5. link1

[236] Qu Z, Ding J. Physical modification of the interior surfaces of PLGA porous scaffolds using sugar fibers as template. J Biomater Sci Polym Ed 2013;24 (4):447–59. link1

[237] Liu X, Liu R, Cao B, Ye K, Li S, Gu Y, et al. Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials 2016;111:27–39. link1

[238] Yang SP, Wen HS, Lee TM, Lui TS. Cell response on the biomimetic scaffold of silicon nano- and micro-topography. J Mater Chem B Mater Biol Med 2016;4 (10):1891–7. link1

[239] Liu X, Liu R, Gu Y, Ding J. Nonmonotonic self-deformation of cell nuclei on topological surfaces with micropillar array. ACS Appl Mater Interfaces 2017;9 (22):18521–30. link1

[240] Liu R, Yao X, Liu X, Ding J. Proliferation of cells with severe nuclear deformation on a micropillar array. Langmuir 2019;35(1):284–99. link1

[241] Liu R, Liu Q, Pan Z, Liu X, Ding J. Cell type and nuclear size dependence of the nuclear deformation of cells on a micropillar array. Langmuir 2019;35 (23):7469–77. link1

[242] Christiani TR, Baroncini E, Stanzione J, Vernengo AJ. In vitro evaluation of 3D printed polycaprolactone scaffolds with angle-ply architecture for annulus fibrosus tissue engineering. Regen Biomater 2019;6(3):175–84. link1

[243] Liu R, Ding J. Chromosomal repositioning and gene regulation of cells on a micropillar array. ACS Appl Mater Interfaces 2020;12(32):35799–812. link1

[244] Xu T, Sheng L, He L, Weng J, Duan K. Enhanced osteogenesis of hydroxyapatite scaffolds by coating with BMP-2-loaded short polylactide nanofiber: a new drug loading method for porous scaffolds. Regen Biomater 2020;7(1):91–8. link1

[245] Ma Z, Li J, Cao F, Yang J, Liu R, Zhao D. Porous silicon carbide coated with tantalum as potential material for bone implants. Regen Biomater 2020;7 (5):453–9. link1

[246] Ji Q, Wang Z, Jiao Z, Wang Y, Wu Z, Wang P, et al. Biomimetic polyetheretherketone microcarriers with specific surface topography and self-secreted extracellular matrix for large-scale cell expansion. Regen Biomater 2020;7(1):109–18. link1

[247] Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater 2020;7(1):53–61. link1

[248] Desai NP, Hubbell JA. Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 1991;12(2):144–53. link1

[249] Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 2000;53(1):1–7. link1

[250] Quirk RA, Chan WC, Davies MC, Tendler SJB, Shakesheff KM. Poly(L-lysine)– GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials 2001;22(8):865–72. link1

[251] Menzies DJ, Nelson A, Shen HH, McLean KM, Forsythe JS, Gengenbach T, et al. An X-ray and neutron reflectometry study of ‘PEG-like’ plasma polymer films. J R Soc Interface 2012;9(70):1008–19. link1

[252] Morent R, De Geyter N, Desmet T, Dubruel P, Leys C. Plasma surface modification of biodegradable polymers: a review. Plasma Process Polym 2011;8(3):171–90. link1

[253] Pan Z, Qu ZH, Zhang Z, Peng R, Yan C, Ding JD. Particle-collision and porogenleaching technique to fabricate polymeric porous scaffolds with microscale roughness of interior surfaces. Chin J Polym Sci 2013;31(5):737–47. link1

[254] Mahapatra C, Kim JJ, Lee JH, Jin GZ, Knowles JC, Kim HW. Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. J Tissue Eng 2019;10:2041731419826433. link1

[255] Zhu Y, Liu D, Wang X, He Y, Luan W, Qi F, et al. Polydopamine-mediated covalent functionalization of collagen on a titanium alloy to promote biocompatibility with soft tissues. J Mater Chem B Mater Biol Med 2019;7 (12):2019–31. link1

[256] Wang X, Lei X, Yu Y, Miao S, Tang J, Fu Y, et al. Biological sealing and integration of a fibrinogen-modified titanium alloy with soft and hard tissues in a rat model. Biomater Sci 2021;9(15):5192–208. link1

[257] Amiji M, Park K. Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J Biomater Sci Polym Ed 1993;4(3):217–34. link1

[258] Lin WC, Liu TY, Yang MC. Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 2004;25(10):1947–57. link1

[259] Ren XK, Feng YK, Guo JT, Wang HX, Li Q, Yang J, et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015;44(15):5745. link1

[260] Ge S, Xi Y, Du R, Ren Y, Xu Z, Tan Y, et al. Inhibition of in-stent restenosis after graphene oxide double-layer drug coating with good biocompatibility. Regen Biomater 2019;6(5):299–309. link1

[261] Li P, Cai W, Li X, Wang K, Zhou L, You T, et al. Preparation of phospholipidbased polycarbonate urethanes for potential applications of blood-contacting implants. Regen Biomater 2020;7(5):491–504. link1

[262] Koobatian MT, Row S, Smith Jr RJ, Koenigsknecht C, Andreadis ST, Swartz DD. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 2016;76:344–58. link1

[263] Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials 2019;190– 191:97–110. link1

[264] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008;20(2):86–100. link1

[265] Li J, Zhang YJ, Lv ZY, Liu K, Meng CX, Zou B, et al. The observed difference of macrophage phenotype on different surface roughness of mineralized collagen. Regen Biomater 2020;7(2):203–11. link1

[266] Chen L, Wei L, Shao A, Xu L. Immune risk assessment of residual aGal in xenogeneic decellularized cornea using GTKO mice. Regen Biomater 2020;7 (4):427–34. link1

[267] Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 2016;352(6283):366–70. link1

[268] Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on materialguided cell behaviors and tissue engineering. Chem Rev 2017;117 (5):4376–421. link1

[269] Hu Y, Tian ZG, Zhang C. Natural killer cell-based immunotherapy for cancer: advances and prospects. Engineering 2019;5(1):106–14. link1

[270] Sun L, Li X, Xu M, Yang F, Wang W, Niu X. In vitro immunomodulation of magnesium on monocytic cell toward anti-inflammatory macrophages. Regen Biomater 2020;7(4):391–401. link1

[271] Wu L, Ding J. In vitro degradation of three-dimensional porous poly(D, Llactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2004;25 (27):5821–30. link1

[272] Wu L, Ding J. Effects of porosity and pore size on in vitro degradation of threedimensional porous poly(D, L-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A 2005;75(4):767–77. link1

[273] Zhu W, Zhang Y, Wang BB, Ding JD. Preparation of a novel thermosensitive and biodegradable microgel particles. Chem J Chin Univ 2005;26(2):373–5. link1

[274] Zhu W, Wang BB, Zhang Y, Ding JD. Preparation of a thermosensitive and biodegradable microgel via polymerization of macromonomers based on diacrylated pluronic/oligoester copolymers. Eur Polym J 2005;41(9):2161–70. link1

[275] Zhang Y, Zhu W, Wang B, Ding J. A novel microgel and associated postfabrication encapsulation technique of proteins. J Control Release 2005;105 (3):260–8. link1

[276] Wang B, Zhu W, Zhang Y, Yang ZG, Ding JD. Synthesis of a chemicallycrosslinked thermo-sensitive hydrogel film and in situ encapsulation of model protein drugs. React Funct Polym 2006;66(5):509–18. link1

[277] Yang ZG, Ding JD. A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block. Macromol Rapid Commun 2008;29(9):751–6. link1

[278] Yu L, Zhang Z, Zhang H, Ding J. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 2010;11(8):2169–78. link1

[279] Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 2011;32(21):4725–36. link1

[280] Yu L, Zhang Z, Ding JD. In vitro degradation and protein release of transparent and opaque physical hydrogels of block copolymers at body temperature. Macromol Res 2012;20(3):234–43. link1

[281] Zhang H, Zhou L, Zhang W. Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev 2014;20(5):492–502. link1

[282] Ding JD. A composite strategy to fabricate high-performance biodegradable stents for tissue regeneration. Sci China Mater 2018;61(8):1132–4. link1

[283] Jiang W, Lin J, Chen AH, Pan J, Liu H. A portable device for studying the effects of fluid flow on degradation properties of biomaterials inside cell incubators. Regen Biomater 2019;6(1):39–48. link1

[284] Caballé-Serrano J, Zhang S, Sculean A, Staehli A, Bosshardt DD. Tissue integration and degradation of a porous collagen-based scaffold used for soft tissue augmentation. Materials 2020;13(10):E2420. link1

[285] Li B, Xie Z, Wang Q, Chen X, Liu Q, Wang W, et al. Biodegradable polymeric occluder for closure of atrial septal defect with interventional treatment of cardiovascular disease. Biomaterials 2021;274:120851. link1

[286] Gai X, Liu C, Wang G, Qin Y, Fan C, Liu J, et al. A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis. Regen Biomater 2020;7(3):321–9. link1

[287] Lei K, Shen W, Cao L, Yu L, Ding J. An injectable thermogel with high radiopacity. Chem Commun 2015;51(28):6080–3. link1

[288] Lei K, Ma Q, Yu L, Ding J. Functional biomedical hydrogels for in vivo imaging. J Mater Chem B Mater Biol Med 2016;4(48):7793–812. link1

[289] Ma Q, Lei KW, Ding J, Yu L, Ding JD. Design, synthesis and ring-opening polymerization of a new iodinated carbonate monomer: a universal route towards ultrahigh radiopaque aliphatic polycarbonates. Polym Chem 2017;8 (43):6665–74. link1

[290] Lei K, Chen Y, Wang J, Peng X, Yu L, Ding J. Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater 2017;55:396–409. link1

[291] Chen XB, Zhang JL, Wu KT, Wu XH, Tang JY, Cui SQ, et al. Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using trimodal bioimaging. Small Methods 2020;4(9):2000310. link1

[292] Rosales AM, Anseth KS. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 2016;1(2):15012. link1

[293] Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol 2008;20(2):109–16. link1

[294] He Y, Pan Z, Ding JD. Effects of degradation media of polyester porous scaffolds on viability and osteogenic differentiation of mesenchymal stem cells. Acta Polym Sin 2013;6:755–64. link1

[295] He Y, Wang WR, Ding JD. Effects of L-lactic acid and D, L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. Chin Sci Bull 2013;58(20):2404–11. link1

[296] Yang D, Xiao J, Wang B, Li L, Kong X, Liao J. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. Mater Sci Eng C 2019;104:109927. link1

[297] Peng Y, Liu QJ, He T, Ye K, Yao X, Ding J. Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Biomaterials 2018;178:467–80. link1

[298] Cao B, Li Z, Peng R, Ding J. Effects of cell-cell contact and oxygen tension on chondrogenic differentiation of stem cells. Biomaterials 2015;64:21–32. link1

[299] Yang Y, Wang K, Gu X, Leong KW. Biophysical regulation of cell behaviorcross talk between substrate stiffness and nanotopography. Engineering 2017;3(1):36–54. link1

[300] Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human brain organoids on a chip reveal the physics of folding. Nat Phys 2018;14 (5):515–22. link1

[301] Marturano-Kruik A, Nava MM, Yeager K, Chramiec A, Hao L, Robinson S, et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc Natl Acad Sci USA 2018;115(6):1256–61. link1

[302] He Y, Mao T, Gu Y, Yang Y, Ding J. A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication 2020;12(4):045032. link1

[303] Wang J, Shao CM, Wang YT, Sun LY, Zhao YJ. Microfluidics for medical additive manufacturing. Engineering 2020;6(11):1244–57. link1

[304] Mao T, He Y, Gu Y, Yang Y, Yu Y, Wang X, et al. Critical frequency and critical stretching rate for reorientation of cells on a cyclically stretched polymer in a microfluidic chip. ACS Appl Mater Interfaces 2021;13 (12):13934–48. link1

[305] Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011;21(12):745–54. link1

[306] Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014;32 (8):760–72. link1

[307] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32(8):773–85. link1

[308] An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering 2015;1(2):261–8. link1

[309] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616–30. link1

[310] Yan Q, Dong HH, Su J, Han JH, Song B, Wei QS, et al. A review of 3D printing technology for medical applications. Engineering 2018;4(5):729–42. link1

[311] Xia H, Zhao D, Zhu H, Hua Y, Xiao K, Xu Y, et al. Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration. ACS Appl Mater Interfaces 2018;10(37):31704–15. link1

[312] Zhang B, Gao L, Ma L, Luo YC, Yang HY, Cui ZF. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering 2019;5(4):777–94. link1

[313] Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019;365(6452):482–7. link1

[314] Shi J, Song JC, Song B, Lu WF. Multi-objective optimization design through machine learning for drop-on-demand bioprinting. Engineering 2019;5 (3):586–93. link1

[315] Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK. 3Dprinted bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater 2019;6(1):29–37. link1

[316] Wang YC, Fu PH, Wang NQ, Peng LM, Kang B, Zeng H, et al. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants. Engineering 2020;6(11):1267–75. link1

[317] Wang Y, Tan QT, Pu F, Boone D, Zhang M. A review of the application of additive manufacturing in prosthetic and orthotic clinics from a biomechanical perspective. Engineering 2020;6(11):1258–66. link1

[318] Li CX, Pisignano D, Zhao Y, Xue JJ. Advances in medical applications of additive manufacturing. Engineering 2020;6(11):1222–31. link1

[319] Yu XY, Li GH, Zheng YK, Gao JM, Fu Y, Wang QS, et al. ‘‘Invisible” orthodontics by polymeric ‘‘clear” aligners molded by 3D-printed personalized dental models. Regen Biomater 2022;9:rbac007. link1

[320] Ding XQ, Gao JM, Yu XY, Shi JY, Chen J, Yu L, et al. 3D-printed porous scaffolds of hydrogels modified with TGF-b1 binding peptide to promote in vivo cartilage regeneration and animal gait restoration. ACS Appl Mater Interfaces In press. In press. link1

[321] Williams DF. Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol 2019;7(127):127. link1

Related Research