Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 17, Issue 10 doi: 10.1016/j.eng.2021.12.023

Architectural Design and Additive Manufacturing of Mechanical Metamaterials: A Review

a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
b Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 90095, USA

Received: 2021-05-18 Revised: 2021-09-04 Accepted: 2022-03-28 Available online: 2022-05-29

Next Previous

Abstract

Mechanical metamaterials can be defined as a class of architected materials that exhibit unprecedented mechanical properties derived from designed artificial architectures rather than their constituent materials. While macroscale and simple layouts can be realized by conventional top-down manufacturing approaches, many of the sophisticated designs at various length scales remain elusive, due to the lack of adequate manufacturing methods. Recent progress in additive manufacturing (AM) has led to the realization of a myriad of novel metamaterial concepts. AM methods capable of fabricating microscale architectures with high resolution, arbitrary complexity, and high feature fidelity have enabled the rapid development of architected metamaterials and drastically reduced the design-computation and experimental-validation cycle. This paper first provides a detailed review of various topologies based on the desired mechanical properties, including stiff, strong, and auxetic (negative Poisson’s ratio) metamaterials, followed by a discussion of the AM technologies capable of fabricating these metamaterials. Finally, we discuss current challenges and recommend future directions for AM and mechanical metamaterials.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

References

[ 1 ] Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010;9(5):387–96. link1

[ 2 ] Chen HT, O’Hara JF, Azad AK, Taylor AJ, Averitt RD, Shrekenhamer DB, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon 2008;2(5):295–8. link1

[ 3 ] Soukoulis CM, Wegener M. Optical metamaterials—more bulky and less lossy. Science 2010;330(6011):1633–4. link1

[ 4 ] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, et al. Threedimensional optical metamaterial with a negative refractive index. Nature 2008;455(7211):376–9. link1

[ 5 ] Zhao Y, Belkin MA, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 2012;3(1):870. link1

[ 6 ] Lakes R. Foam structures with a negative Poisson’s ratio. Science 1987;235 (4792):1038–40. link1

[ 7 ] Greaves GN, Greer AL, Lakes RS, Rouxel T. Poisson’s ratio and modern materials. Nat Mater 2011;10(11):823–37. Corrected in: Nat Mater 2019;18 (4):406. link1

[ 8 ] Berger JB, Wadley HNG, McMeeking RM. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 2017;543(7646):533–7. link1

[ 9 ] Zheng X, Lee H, Weisgraber TH, Shusteff M, Deotte J, Duoss EB, et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014;344 (6190):1373–7. link1

[10] Hsieh MT, Endo B, Zhang Y, Bauer J, Valdevit L. The mechanical response of cellular materials with spinodal topologies. J Mech Phys Solids 2019;125:401–19. link1

[11] Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 2014;5 (1):4130. link1

[12] Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M. On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 2012;100(19):191901. link1

[13] Christensen J, Kadic M, Wegener M, Kraft O, Wegener M. Vibrant times for mechanical metamaterials. MRS Commun 2015;5(3):453–62. link1

[14] Lakes RS, Lee T, Bersie A, Wang YC. Extreme damping in composite materials with negative-stiffness inclusions. Nature 2001;410(6828):565–7. link1

[15] Morris C, Bekker L, Spadaccini C, Haberman M, Seepersad C. Tunable mechanical metamaterial with constrained negative stiffness for improved quasi-static and dynamic energy dissipation. Adv Eng Mater 2019;21 (7):1900163. link1

[16] Nicolaou ZG, Motter AE. Mechanical metamaterials with negative compressibility transitions. Nat Mater 2012;11(7):608–13. link1

[17] Zeng J, Hu H, Zhou L. A study on negative Poisson’s ratio effect of 3D auxetic orthogonal textile composites under compression. Smart Mater Struct 2017;26(6):065014. link1

[18] Ren X, Shen J, Tran P, Ngo TD, Xie YM. Auxetic nail: design and experimental study. Compos Struct 2018;184:288–98. link1

[19] Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE. An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 2000;39(3):654–65. link1

[20] Lakes RS. Extreme damping in compliant composites with a negativestiffness phase. Philos Mag Lett 2001;81(2):95–100. link1

[21] Wang YC, Lakes RS. Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J Compos Mater 2005;39 (18):1645–57. link1

[22] Bauer J, Meza LR, Schaedler TA, Schwaiger R, Zheng X, Valdevit L. Nanolattices: an emerging class of mechanical metamaterials. Adv Mater 2017;29(40):1701850. link1

[23] Ren X, Das R, Tran P, Ngo TD, Xie YM. Auxetic metamaterials and structures: a review. Smart Mater Struct 2018;27(2):023001. link1

[24] Luo C, Han CZ, Zhang XY, Zhang XG, Ren X, Xie YM. Design, manufacturing and applications of auxetic tubular structures: a review. Thin-walled Struct 2021;163:107682. link1

[25] Kolken HMA, Zadpoor AA. Auxetic mechanical metamaterials. RSC Adv 2017;7(9):5111–29. link1

[26] Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, et al. Additive manufacturing of metamaterials: a review. Addit Manuf 2020;36:101562. link1

[27] Bertoldi K, Vitelli V, Christensen J, van Hecke M. Flexible mechanical metamaterials. Nat Rev Mater 2017;2(11):17066. link1

[28] Yu X, Zhou J, Liang H, Jiang Z, Wu L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 2018;94:114–73. link1

[29] Barchiesi E, Spagnuolo M, Placidi L. Mechanical metamaterials: a state of the art. Math Mech Solids 2019;24(1):212–34. link1

[30] Surjadi JU, Gao L, Du H, Li X, Xiong X, Fang NX, et al. Mechanical metamaterials and their engineering applications. Adv Eng Mater 2019;21 (3):1800864. link1

[31] Wu W, Hu W, Qian G, Liao H, Xu X, Berto F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 2019;180:107950. link1

[32] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Oxford: Pergamon Press; 1988. link1

[33] Ashby MF, Medalist RFM. The mechanical properties of cellular solids. Metall Trans A 1983;14(9):1755–69. link1

[34] Fleck NA, Deshpande VS, Ashby MF. Micro-architectured materials: past, present and future. Proc R Soc A 2010;466(2121):2495–516. link1

[35] Ashby MF. The properties of foams and lattices. Philos Trans A Math Phys Eng Sci 2006;364(1838):15–30. link1

[36] Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW. Mechanical structure– property relationship of aerogels. J Non-Cryst Solids 2000;277(2–3):127–41. link1

[37] Woignier T, Phalippou J, Vacher R. Parameters affecting elastic properties of silica aerogels. J Mater Res 1989;4(3):688–92. link1

[38] Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, et al. Ultralight metallic microlattices. Science 2011;334(6058):962–5. link1

[39] Scherer GW, Smith DM, Qiu X, Anderson JM. Compression of aerogels. J NonCryst Solids 1995;186:316–20. link1

[40] Egan PF, Gonella VC, Engensperger M, Ferguson SJ, Shea K. Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLoS ONE 2017;12(8):0182902. link1

[41] Wang Y, Sigmund O. Quasiperiodic mechanical metamaterials with extreme isotropic stiffness. Extreme Mech Lett 2020;34:100596. link1

[42] Kader MA, Hazell PJ, Brown AD, Tahtali M, Ahmed S, Escobedo JP, et al. Novel design of closed-cell foam structures for property enhancement. Addit Manuf 2020;31:100976. link1

[43] Abueidda DW, Abu Al-Rub RK, Dalaq AS, Lee DW, Khan KA, Jasiuk I. Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech Mater 2016;95:102–15. link1

[44] Deshpande VS, Ashby MF, Fleck NA. Foam topology: bending versus stretching dominated architectures. Acta Mater 2001;49(6):1035–40. link1

[45] Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG. The topological design of multifunctional cellular metals. Prog Mater Sci 2001;46(3–4):309–27. link1

[46] Ashby MF, Evans A, Fleck NA, Gibson L, Hutchinson JW, Wadley HNG, et al. Metal foams: a design guide. Appl Mech Rev 2001;54(6):B105–6. link1

[47] Kudo A, Misseroni D, Wei Y, Bosi F. Compressive response of non-slender octet carbon microlattices. Front Mater 2019;6:169. link1

[48] Portela CM, Greer JR, Kochmann DM. Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mech Lett 2018;22:138–48. link1

[49] Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids 2001;49(8):1747–69. link1

[50] Dong L, Deshpande V, Wadley H. Mechanical response of Ti–6Al–4V octettruss lattice structures. Int J Solids Struct 2015;60–61:107–24. link1

[51] Favre J, Lohmuller P, Piotrowski B, Kenzari S, Laheurte P, Meraghni F. A continuous crystallographic approach to generate cubic lattices and its effect on relative stiffness of architectured materials. Addit Manuf 2018;21:359–68. link1

[52] Meza LR, Phlipot GP, Portela CM, Maggi A, Montemayor LC, Comella A, et al. Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater 2017;140:424–32. link1

[53] Warren WE, Kraynik AM. Linear elastic behavior of a low-density Kelvin foam with open cells. J Appl Mech 1997;64(4):787–94. link1

[54] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 1963;11(2):127–40. link1

[55] Christensen RM. Mechanics of low density materials. J Mech Phys Solids 1986;34(6):563–78. link1

[56] Ashby MF. Designing hybrid materials. In: Materials selection in mechanical design. Oxford: Butterworth-Heinemann Elsevier Ltd.; 2011. p. 299–340. link1

[57] Fleck NA. An overview of the mechanical properties of foams and periodic lattice materials. In: Singer RF, Körner C, Altstädt V, Münstedt H, editors. Cellular metals and polymers. Bäch: Trans Tech Publications Ltd.; 2005. p. 3–7. link1

[58] Grenestedt JL. Effective elastic behavior of some models for perfect cellular solids. Int J Solids Struct 1999;36(10):1471–501. link1

[59] Hyun S, Torquato S. Optimal and manufacturable two-dimensional, Kagomélike cellular solids. J Mater Res 2002;17(1):137–44. link1

[60] Tancogne-Dejean T, Diamantopoulou M, Gorji MB, Bonatti C, Mohr D. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv Mater 2018;30(45):1803334. link1

[61] Hashin Z. On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J Mech Phys Solids 1965;13(3):119–34. link1

[62] Zhang YH, Qiu XM, Fang DN. Mechanical properties of two novel planar lattice structures. Int J Solids Struct 2008;45(13):3751–68. link1

[63] Romijn NER, Fleck NA. The fracture toughness of planar lattices: imperfection sensitivity. J Mech Phys Solids 2007;55(12):2538–64. link1

[64] Wang AJ, McDowell DL. In-plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater Technol Trans 2004;126(2):137–56. link1

[65] Thomson W. On the division of space with minimum partitional area. Acta Math 1887;24(151):504–14. link1

[66] Christodoulou I, Tan PJ. Crack initiation and fracture toughness of random Voronoi honeycombs. Eng Fract Mech 2013;104:140–61. link1

[67] Silva MJ, Hayes WC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 1995;37(11):1161–77. link1

[68] Silva MJ, Gibson LJ. The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 1997;39(5):549–63. link1

[69] Pini V, Ruz JJ, Kosaka PM, Malvar O, Calleja M, Tamayo J. How twodimensional bending can extraordinarily stiffen thin sheets. Sci Rep 2016;6 (1):29627. link1

[70] Schwaiger R, Meza LR, Li X. The extreme mechanics of micro- and nanoarchitected materials. MRS Bull 2019;44(10):758–65. link1

[71] O’Masta MR, Dong L, St-Pierre L, Wadley HNG, Deshpande VS. The fracture toughness of octet-truss lattices. J Mech Phys Solids 2017;98:271–89. link1

[72] Hsieh MT, Deshpande VS, Valdevit L. A versatile numerical approach for calculating the fracture toughness and R-curves of cellular materials. J Mech Phys Solids 2020;138:103925. link1

[73] Abueidda DW, Bakir M, Abu Al-Rub RK, Bergström JS, Sobh NA, Jasiuk I. Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater Des 2017;122:255–67. link1

[74] Gandy PJF, Bardhan S, Mackay AL, Klinowski J. Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces. Chem Phys Lett 2001;336(3–4):187–95. link1

[75] Hsieh MT, Valdevit L. Minisurf—a minimal surface generator for finite element modeling and additive manufacturing. Softw Impacts 2020;6:100026. link1

[76] Hsieh MT, Valdevit L. Update (2.0) to MiniSurf— a minimal surface generator for finite element modeling and additive manufacturing. Softw Impacts 2020;6:100035. link1

[77] Zhang L, Feih S, Daynes S, Chang S, Wang MY, Wei J, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf 2018;23:505–15. link1

[78] Lee MG, Lee JW, Han SC, Kang K. Mechanical analyses of ‘‘Shellular”, an ultralow-density material. Acta Mater 2016;103:595–607. link1

[79] Abueidda DW, Jasiuk I, Sobh NA. Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces. Mater Des 2018;145:20–7. link1

[80] Lee DW, Khan KA, Abu Al-Rub RK. Stiffness and yield strength of architectured foams based on the Schwarz primitive triply periodic minimal surface. Int J Plast 2017;95:1–20. link1

[81] Al-Ketan O, Rezgui R, Rowshan R, Du H, Fang NX, Abu Al-Rub RK. Microarchitected stretching-dominated mechanical metamaterials with minimal surface topologies. Adv Eng Mater 2018;20(9):1800029. link1

[82] Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf 2018;19:167–83. link1

[83] Al-Ketan O, Abu Al-Rub RK, Rowshan R. The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J Mater Res 2018;33(3):343–59. link1

[84] Cahn JW. On spinodal decomposition in cubic crystals. Acta Metall 1962;10 (3):179–83. link1

[85] Cahn JW. On spinodal decomposition. Acta Metall 1961;9(9):795–801. link1

[86] Portela CM, Vidyasagar A, Krödel S, Weissenbach T, Yee DW, Greer JR, et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc Natl Acad Sci USA 2020;117(11):5686–93. link1

[87] Zhang Y, Hsieh MT, Valdevit L. Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Compos Struct 2021;263:113693. link1

[88] Lee MN, Mohraz A. Bicontinuous macroporous materials from bijel templates. Adv Mater 2010;22(43):4836–41. link1

[89] Biener J, Hodge AM, Hayes JR, Volkert CA, Zepeda-Ruiz LA, Hamza AV, et al. Size effects on the mechanical behavior of nanoporous Au. Nano Lett 2006;6 (10):2379–82. link1

[90] Garcia AE, Wang CS, Sanderson RN, McDevitt KM, Zhang Y, Valdevit L, et al. Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures. Nanoscale Adv 2019;1(10):3870–82. link1

[91] Suquet PM. Overall potentials and extremal surfaces of power law or ideally plastic composites. J Mech Phys Solids 1993;41(6):981–1002. link1

[92] Castañeda PP, Debotton G. On the homogenized yield strength of two-phase composites. Proc R Soc A 1903;1992(438):419–31. link1

[93] Bauer J, Schroer A, Schwaiger R, Kraft O. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater 2016;15(4):438–43. link1

[94] Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable threedimensional. Science 2014;345(6202):1322–36. link1

[95] Lian J, Jang D, Valdevit L, Schaedler TA, Jacobsen AJ, Carter WB, et al. Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures. Nano Lett 2011;11 (10):4118–25. link1

[96] Valdevit L, Godfrey SW, Schaedler TA, Jacobsen AJ, Carter WB. Compressive strength of hollow microlattices: experimental characterization, modeling, and optimal design. J Mater Res 2013;28(17):2461–73. link1

[97] Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M. Deformation and failure behaviour of Ti–6Al–4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 2016;84:1391–411. link1

[98] Yan C, Hao L, Hussein A, Raymont D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 2012;62:32–8. link1

[99] Rajagopalan S, Robb RA. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal 2006;10(5):693–712. link1

[100] Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC. Molecular network design. Nature 1991;353(6340):124. link1

[101] Burns S. Negative Poisson’s ratio materials. Science 1987;238(4826):551. link1

[102] Soman P, Fozdar DY, Lee JW, Phadke A, Varghese S, Chen S. A threedimensional polymer scaffolding material exhibiting a zero Poisson’s ratio. Soft Matter 2012;8(18):4946–51. link1

[103] Silberschmidt VV, Matveenko VP, editors. Mechanics of advanced materials. Cham: Springer; 2015. link1

[104] Gibson IJ, Ashby MF. The mechanics cellular materials of three-dimensional cellular materials. Proc R Soc A 1982;382(1782):43–59. link1

[105] Evans KE, Nkansah MA, Hutchinson IJ. Auxetic foams: modelling negative Poisson’s ratios. Acta Metall Mater 1994;42(4):1289–94. link1

[106] Evans KE, Alderson A. Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 2000;12(9):617–28. link1

[107] Yang DU, Lee S, Huang FY. Geometric effects on micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method. Finite Elem Anal Des 2003;39(3):187–205. link1

[108] Wan H, Ohtaki H, Kotosaka S, Hu G. A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur J Mech A Solids 2004;23(1):95–106. link1

[109] Larsen UD, Signund O, Bouwsta S. Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 1997;6(2):99–106. link1

[110] Grima JN, Gatt R, Alderson A, Evans KE. On the potential of connected stars as auxetic systems. Mol Simul 2005;31(13):925–35. link1

[111] Smith CW, Grima JN, Evans KE. Novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 2000;48 (17):4349–56. link1

[112] Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE. Novel honeycombs with auxetic behaviour. Acta Mater 2005;53(8):2439–45. link1

[113] Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K. 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013;25(36):5044–9. link1

[114] Bertoldi K, Reis PM, Willshaw S, Mullin T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 2010;22(3):361–6. link1

[115] Wang XT, Wang B, Li XW, Ma L. Mechanical properties of 3D re-entrant auxetic cellular structures. Int J Mech Sci 2017;131–132:396–407. link1

[116] Ren X, Shen J, Ghaedizadeh A, Tian H, Xie YM. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater Struct 2015;24(9):095016. link1

[117] Zhang XY, Ren X. A simple methodology to generate metamaterials and structures with negative Poisson’s ratio. Phys Status Solidi B 2020;257 (10):2000439. link1

[118] Prall DM, Lakes RS. Properties of chiral honeycombe with Poisson’s ratio of 1. Int J Mech Sci 1997;39(13):305–14. link1

[119] Wojciechowski KW, Bran´ ka AC. Negative Poisson ratio in a two-dimensional ‘‘isotropic” solid. Phys Rev A Gen Phys 1989;40(12):7222–5. link1

[120] Lakes R. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J Mater Sci 1991;26(9):2287–92. link1

[121] Grima JN, Gatt R, Farrugia PS. On the properties of auxetic meta-tetrachiral structures. Phys Status Solidi B 2008;245(3):511–20. link1

[122] Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 2010;70(7):1042–8. link1

[123] Mousanezhad D, Haghpanah B, Ghosh R, Hamouda AM, Nayeb-Hashemi H, Vaziri A. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach. Theor Appl Mech Lett 2016;6(2):81–96. link1

[124] Grima JN, Evans KE. Auxetic behavior from rotating squares. J Mater Sci Lett 2000;19(17):1563–5. link1

[125] Grima JN, Evans KE. Auxetic behavior from rotating triangles. J Mater Sci 2006;41(10):3193–6. link1

[126] Grima JN, Alderson A, Evans KE. Negative Poisson’s ratios from rotating rectangles. Comput Methods Sci Technol 2004;10(2):137–45. link1

[127] Grima JN, Gatt R, Alderson A, Evans KE. On the auxetic properties of ‘‘rotating rectangles” with different connectivity. J Phys Soc Jpn 2005;74:2866–7. link1

[128] Attard D, Grima JN. Auxetic behaviour from rotating rhombi. Phys Status Solidi B 2008;245(11):2395–404. link1

[129] Attard D, Manicaro E, Grima JN. On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys Status Solidi B 2009;246 (9):2033–44. link1

[130] Grima JN, Farrugia PS, Gatt R, Attard D. On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi B 2008;245(3):521–9. link1

[131] Grima JN, Manicaro E, Attard D. Auxetic behaviour from connected differentsized squares and rectangles. Proc R Soc A 2011;467(2126):439–58. link1

[132] Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A, et al. Hierarchical auxetic mechanical metamaterials. Sci Rep 2015;5(1):8395. link1

[133] Ren X, Shen J, Tran P, Ngo TD, Xie YM. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial. Mater Des 2018;139:336–42. link1

[134] Grima JN, Gatt R. Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 2010;12(6):460–4. link1

[135] Grima JN, Gatt R, Ellul B, Chetcuti E. Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations. J Non-Cryst Solids 2010;356(37–40):1980–7. link1

[136] Mizzi L, Attard D, Evans KE, Gatt R, Grima JN. Auxetic mechanical metamaterials with diamond and elliptically shaped perforations. Acta Mech 2021;232(2):779–91. link1

[137] Mizzi L, Azzopardi KM, Attard D, Grima JN, Gatt R. Auxetic metamaterials exhibiting giant negative Poisson’s ratios. Phys Status Solidi Rapid Res Lett 2015;9(7):425–30. link1

[138] Grima JN, Mizzi L, Azzopardi KM, Gatt R. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv Mater 2016;28(2):385–9. link1

[139] Mizzi L, Grima JN, Gatt R, Attard D. Analysis of the deformation behavior and mechanical properties of slit-perforated auxetic metamaterials. Phys Status Solidi B 2019;256(1):1800153. link1

[140] Wang H, Xiao SH, Zhang C. Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions. Adv Eng Mater 2021;23(7):2100102. link1

[141] Caddock BD, Evans KE. Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J Phys D Appl Phys 1989;22 (12):1877–82. link1

[142] Evans KE, Caddock BD. Microporous materials with negative Poisson’s ratios. II. Mechanisms and interpretation. J Phys D Appl Phys 1989;22(12):1883–7. link1

[143] Evans KE. Tensile network microstructures exhibiting negative Poisson’s ratios. J Phys D Appl Phys 1989;22(12):1870–6. link1

[144] Alderson K, Alderson A, Ravirala N, Simkins V, Davies P. Manufacture and characterisation of thin flat and curved auxetic foam sheets. Phys Status Solidi B 2012;249(7):1315–21. link1

[145] Bouaziz O, Masse JP, Allain S, Orgéas L, Latil P. Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater Sci Eng A 2013;570:1–7. link1

[146] Wood AJ. Witten’s lectures on crumpling. Phys A Stat Mech Its Appl 2002;313 (1–2):83–109. link1

[147] Ben Amar M, Pomeau Y. Crumpled paper. Proc R Soc A 1997;453 (1959):729–55. link1

[148] Miura K. Method of packaging and deployment of large membranes in space. Sagamihara: Institute of Space and Astronautical Science; 1985. link1

[149] Schenk M, Guest SD. Origami folding: a structural engineering approach. In: Proceedings of the 5th International Conference on Origami in Science, Mathematics and Education; 2010 Jul 13–17; Singapore; 2010. p. 291–303.

[150] Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proc Natl Acad Sci USA 2013;110(9):3276–81. link1

[151] Zhang Z, Tian R, Zhang X, Wei F, Yang X. A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness. J Mater Sci 2021;56(25):14139–56. link1

[152] Choi JB, Lakes RS. Non-linear properties of metallic cellular materials with a negative Poisson’s ratio. J Mater Sci 1992;27(19):5375–81. link1

[153] Overvelde JTB, Shan S, Bertoldi K. Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Adv Mater 2012;24 (17):2337–42. link1

[154] Chen Z, Wu X, Xie YM, Wang Z, Zhou S. Re-entrant auxetic lattices with enhanced stiffness: a numerical study. Int J Mech Sci 2020;178:105619. link1

[155] Yang L, Harrysson O, West H, Cormier D. Compressive properties of Ti–6Al– 4V auxetic mesh structures made by electron beam melting. Acta Mater 2012;60(8):3370–9. link1

[156] Shokri Rad M, Ahmad Z, Alias A. Computational approach in formulating mechanical characteristics of 3D star honeycomb auxetic structure. Adv Mater Sci Eng 2015;2015:650769. link1

[157] Chen Y, Fu MH. A novel three-dimensional auxetic lattice meta-material with enhanced stiffness. Smart Mater Struct 2017;26(10):105029. link1

[158] Spadoni A, Ruzzene M. Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 2012;60(1):156–71. link1

[159] Ha CS, Plesha ME, Lakes RS. Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 2016;25(5):054005. link1

[160] Slann A, White W, Scarpa F, Boba K, Farrow I. Cellular plates with auxetic rectangular perforations. Phys Status Solidi B 2015;252(7):1533–9. link1

[161] Carta G, Brun M, Baldi A. Porous materials with omnidirectional negative Poisson’s ratio. 2015. arXiv:1505.07983.

[162] Zheng X, Guo X, Watanabe I. A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Mater Des 2021;198:109313. link1

[163] Wang L, Zhu S, Wang B, Tan X, Zou Y, Chen S, et al. Latitude-and-longitudeinspired three-dimensional auxetic metamaterials. Extreme Mech Lett 2021;42:101142. link1

[164] Lu ZX, Li X, Yang ZY, Xie F. Novel structure with negative Poisson’s ratio and enhanced Young’s modulus. Compos Struct 2016;138:243–52. link1

[165] Fu MH, Chen Y, Hu LL. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos Struct 2017;160:574–85. link1

[166] Jacobsen AJ, Barvosa-Carter W, Nutt S. Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv Mater 2007;19 (22):3892–6. link1

[167] Jacobsen AJ, Barvosa-Carter W, Nutt S. Compression behavior of micro-scale truss structures formed from self-propagating polymer waveguides. Acta Mater 2007;55(20):6724–33. link1

[168] Erdeniz D, Schaedler TA, Dunand DC. Deposition-based synthesis of nickelbased superalloy microlattices. Scr Mater 2017;138:28–31. link1

[169] Hundley JM, Clough EC, Jacobsen AJ. The low velocity impact response of sandwich panels with lattice core reinforcement. Int J Impact Eng 2015;84:64–77. link1

[170] Yin S, Jacobsen AJ, Wu L, Nutt SR. Inertial stabilization of flexible polymer micro-lattice materials. J Mater Sci 2013;48(19):6558–66. link1

[171] Torrents A, Schaedler TA, Jacobsen AJ, Carter WB, Valdevit L. Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater 2012;60(8):3511–23. link1

[172] Jacobsen AJ, Mahoney S, Carter WB, Nutt S. Vitreous carbon micro-lattice structures. Carbon 2011;49(3):1025–32. link1

[173] Fink KD, Kolodziejska JA, Jacobsen AJ, Roper CS. Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides. AIChE J 2011;57(10):2636–46. link1

[174] Jacobsen AJ, Barvosa-Carter W, Nutt S. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta Mater 2008;56(11):2540–8. link1

[175] Jacobsen AJ, Kolodziejska J, Doty R, Fink K, Zhou C, Roper C, et al. Interconnected self-propagating photopolymer waveguides: an alternative to stereolithography for rapid formation of lattice-based open-cellular materials. In: Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; 2010 Aug 9–11; Austin, TX, USA; 2010. p. 846–53. link1

[176] Han SC, Lee JW, Kang K. A new type of low density material: shellular. Adv Mater 2015;27(37):5506–11. link1

[177] Choi JW, Wicker RB, Cho SH, Ha CS, Lee SH. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyp J 2009;15(1):59–70. link1

[178] Choi JW, MacDonald E, Wicker R. Multi-material microstereolithography. Int J Adv Manuf Technol 2010;49(5–8):543–51. link1

[179] Choi JW, Wicker R, Lee SH, Choi KH, Ha CS, Chung I. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 2009;209(15– 16):5494–503. link1

[180] Li M, Liu W. A novel parameterized digital-mask generation method for projection stereolithography in tissue engineering. Rapid Prototyp J 2018;24 (6):935–44. link1

[181] Deshmukh S, Gandhi PS. Optomechanical scanning systems for microstereolithography (MSL): analysis and experimental verification. J Mater Process Technol 2009;209(3):1275–85. link1

[182] Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. 2nd ed. Cham: Springer; 2015. link1

[183] Zhang X, Jiang XN, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A Phys 1999;77(2):149–56. link1

[184] Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding. In: Fort Lauderdale FL, editor. Proceedings IEEE Micro Electro Mechanical Systems; 1993 Feb 10; Fort Lauderdale, FL, USA. Piscataway: IEEE; 1993. p. 42–7. link1

[185] You S, Miller K, Chen S. Microstereolithography. In: Cho DW, editor. Biofabrication and 3D tissue modeling. London: Royal Society of Chemistry; 2019. p. 1–21. link1

[186] Bertsch A, Zissi S, Jézéquel JY, Corbel S, André JC. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst Technol 1997;3(2):42–7. link1

[187] Farsari M, Claret-Tournier F, Huang S, Chatwin CR, Budgett DM, Birch PM, et al. A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask. J Mater Process Technol 2000;107(1–3): 167–72. link1

[188] Ha YM, Choi JW, Lee SH. Mass production of 3-D microstructures using projection microstereolithography. J Mech Sci Technol 2008;22(3):514. link1

[189] Mao Y, Miyazaki T, Sakai K, Gong J, Zhu M, Ito H. A 3D printable thermal energy storage crystalline gel using mask-projection stereolithography. Polymers 2018;10(10):1117. link1

[190] Liu W, Wu H, Tian Z, Li Y, Zhao Z, Huang M, et al. 3D printing of dense structural ceramic microcomponents with low cost: tailoring the sintering kinetics and the microstructure evolution. J Am Ceram Soc 2019;102 (5):2257–62. link1

[191] Bertsch A, Jézéquel JY, André JC. Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique. J Photochem Photobiol A Chem 1997;107(1–3): 275–81. link1

[192] Lambert PM, Campaigne III EA, Williams CB. Design considerations for mask projection microstereolithography systems. In: Proceedings of the 24th International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; 2013 Aug 12–14; Austin, TX, USA; 2013. p. 111–30. link1

[193] Farkas B, Romano I, Ceseracciu L, Diaspro A, Brandi F, Beke S. Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation. Mater Sci Eng C Mater Biol Appl 2015;55:14–21. link1

[194] De Hazan Y, Heinecke J, Weber A, Graule T. High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. J Colloid Interface Sci 2009;337(1):66–74. link1

[195] Lee JW, Lee IH, Cho DW. Development of micro-stereolithography technology using metal powder. Microelectron Eng 2006;83(4–9):1253–6. link1

[196] Morris C, Bekker L, Haberman MR, Seepersad CC. Design exploration of reliably manufacturable materials and structures with applications to negative stiffness metamaterials and microstereolithography. J Mech Des 2018;140(11):111415. link1

[197] Lee MP, Cooper GJT, Hinkley T, Gibson GM, Padgett MJ, Cronin L. Development of a 3D printer using scanning projection stereolithography. Sci Rep 2015;5(1):9875. link1

[198] Cullen AT, Price AD. Digital light processing for the fabrication of 3D intrinsically conductive polymer structures. Synth Met 2018;235:34–41. link1

[199] Ibrahim R, Raman I, Ramlee MHH, Mohamed MAS, Ibrahim M, Saidin W. Evaluation on the photoabsorber composition effect in projection microstereolithography. Appl Mech Mater 2012;159:109–14. link1

[200] Raman R, Bhaduri B, Mir M, Shkumatov A, Lee MK, Popescu G, et al. Highresolution projection microstereolithography for patterning of neovasculature. Adv Healthc Mater 2016;5(5):610–9. link1

[201] Cui J, Wang J, Weibel JA, Pan L. A compliant microstructured thermal interface material for dry and pluggable interfaces. Int J Heat Mass Transf 2019;131:1075–82. link1

[202] Park IB, Ha YM, Lee SH. Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography. Int J Adv Manuf Technol 2010;46(1–4):151–61. link1

[203] Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, et al. Multiscale metallic metamaterials. Nat Mater 2016;15(10):1100–6. Corrected in: Nat Mater 2017;16(4):497. link1

[204] Han D, Yang C, Fang NX, Lee H. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Addit Manuf 2019;27:606–15. link1

[205] Khatri B, Frey M, Raouf-Fahmy A, Scharla MV, Hanemann T. Development of a multi-material stereolithography 3D printing device. Micromachines 2020;11(5):532. link1

[206] Wang Q, Jackson JA, Ge Q, Hopkins JB, Spadaccini CM, Fang NX. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett 2016;117(17):175901. link1

[207] Maruo S, Fourkas JT. Recent progress in multiphoton microfabrication. Laser Photonics Rev 2008;2(1–2):100–11. link1

[208] von Freymann G, Ledermann A, Thiel M, Staude I, Essig S, Busch K, et al. Three-dimensional nanostructures for photonics. Adv Funct Mater 2010;20 (7):1038–52. link1

[209] Do MT, Nguyen TTN, Li Q, Benisty H, Ledoux-Rak I, Lai ND. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Opt Express 2013;21(18):20964–73. link1

[210] Qin XH, Torgersen J, Saf R, Mühleder S, Pucher N, Ligon SC, et al. Threedimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. J Polym Sci A Polym Chem 2013;51 (22):4799–810. link1

[211] Kunwar P, Soman P. Direct laser writing of fluorescent silver nanoclusters: a review of methods and applications. ACS Appl Nano Mater 2020;3 (8):7325–42. link1

[212] Phillips D, Simpson S, Hanna S. Optomechanical microtools and shapeinduced forces. In: Glückstad J, Palima D, editors. Light robotics: structuremediated nanobiophotonics. Amsterdam: Elsevier; 2017. p. 65–98. link1

[213] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt Mater Express 2011;1 (4):614–24. link1

[214] Charipar NA, Charipar KM, Kim H, Kirleis MA, Auyeung RCY, Smith AT. Laser processing of 2D and 3D metamaterial structures. In: Xu X, Hennig G, Nakata Y, Roth SW, editors. Proceedings Volume 8607, laser applications in microelectronic and optoelectronic manufacturing; 2013 Feb 2–7; San Francisco, CA, USA; 2013. p. 86070T. link1

[215] Rill MS, Plet C, Thiel M, Staude I, von Freymann G, Linden S, et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mater 2008;7(7):543–6. link1

[216] Fanyaeu I, Mizeikis V. Realisation of 3D metamaterial perfect absorber structures by direct laser writing. In: von Freymann G, Schoenfeld WV, Rumpf RC, editors. Proceedings Volume 10115, advanced fabrication technologies for micro/nano optics and photonics X; 2017 Jan 28–Feb 2; San Francisco, CA, USA; 2017. p. 101150X. link1

[217] Debnath S, Zhang X, Guney DO, Soukoulis CM. Two-dimensionally isotropic optical metamaterial feasible for stimulated emission depletion microscopy inspired direct laser writing. In: Proceedings of the 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics; 2013 Sep 16–21; Talence, France. Piscataway: IEEE; 2013. p. 427–9. link1

[218] Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 2004;3(7):444–7. link1

[219] Rill MS, Kriegler CE, Thiel M, von Freymann G, Linden S, Wegener M. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation. Opt Lett 2009;34(1):19–21. link1

[220] Kumar R, Joanni E, Savu R, Pereira MS, Singh RK, Constantino CJL, et al. Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy 2019;179:676–84. link1

[221] Hengsbach S, Lantada AD. Direct laser writing of auxetic structures: present capabilities and challenges. Smart Mater Struct 2014;23(8):085033. link1

[222] Berwind MF, Kamas A, Eberl C. A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv Eng Mater 2018;20(11):1800771. link1

[223] Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 2012;24(20):2710–4. link1

[224] Jin D, Chen Q, Huang TY, Huang J, Zhang L, Duan H. Four-dimensional direct laser writing of reconfigurable compound micromachines. Mater Today 2020;32:19–25. link1

[225] Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, von Freymann G, et al. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 2010;22(8):868–71. link1

[226] Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, et al. The emerging frontiers and applications of high-resolution 3D printing. Micromachines 2017;8(4):113. link1

[227] Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295 (5564):2418–21. link1

[228] Li L, Sun R, Zheng R. Tunable morphology and functionality of multicomponent self-assembly: a review. Mater Des 2021;197:109209. link1

[229] Cummins C, Lundy R, Walsh JJ, Ponsinet V, Fleury G, Morris MA. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today 2020;35:100936. link1

[230] Feng H, Lu X, Wang W, Kang NG, Mays JW. Block copolymers: synthesis, selfassembly, and applications. Polymers 2017;9(10):494. link1

[231] Riess G. Micellization of block copolymers. Prog Polym Sci 2003;28 (7):1107–70. link1

[232] Lee PC, Wang CC, Chen CY. Synthesizing isoprene and methyl methacrylate triblock copolymers using peculiar living free radical polymerization with difunctional t-BuLi initiator. Polymer 2020;210:123028. link1

[233] Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 2006;31 (12):1068–132. link1

[234] Zhang H, Hong K, Mays JW. Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macromolecules 2002;35(15):5738–41. link1

[235] Ross CA, Berggren KK, Cheng JY, Jung YS, Chang JB. Three-dimensional nanofabrication by block copolymer self-assembly. Adv Mater 2014;26 (25):4386–96. link1

[236] Bates FS. Polymer–polymer phase behavior. Science 1991;251 (4996):898–905. link1

[237] Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 1994;72(16):2660–3. link1

[238] Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev 2012;41(18):5969–85. link1

[239] Lynd NA, Meuler AJ, Hillmyer MA. Polydispersity and block copolymer selfassembly. Prog Polym Sci 2008;33(9):875–93. link1

[240] Robbins SW, Beaucage PA, Sai H, Tan KW, Werner JG, Sethna JP, et al. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors. Sci Adv 2016;2(1):1501119. link1

[241] Khaderi SN, Scherer MRJ, Hall CE, Steiner U, Ramamurty U, Fleck NA, et al. The indentation response of Nickel nano double gyroid lattices. Extreme Mech Lett 2017;10:15–23. link1

[242] Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K. Evolution of nanoporosity in dealloying. Nature 2001;410(6827):450–3. link1

[243] Gan YX, Zhang Y, Gan JB. Nanoporous metals processed by dealloying and their applications. AIMS Mater Sci 2018;5(6):1141–83. link1

[244] Tsujioka N, Ishizuka N, Tanaka N, Kubo T, Hosoya K. Well-controlled 3D skeletal epoxy-based monoliths obtained by polymerization induced phase separation. J Polym Sci A Polym Chem 2008;46(10):3272–81. link1

[245] Zhou N, Bates FS, Lodge TP. Mesoporous membrane templated by a polymeric bicontinuous microemulsion. Nano Lett 2006;6(10):2354–7. link1

[246] Hodge AM, Biener J, Hayes JR, Bythrow PM, Volkert CA, Hamza AV. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater 2007;55(4):1343–9. link1

[247] Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 2012;11 (9):775–80. link1

[248] El Mel AA, Boukli-Hacene F, Molina-Luna L, Bouts N, Chauvin A, Thiry D, et al. Unusual dealloying effect in gold/copper alloy thin films: the role of defects and column boundaries in the formation of nanoporous gold. ACS Appl Mater Interfaces 2015;7(4):2310–21. link1

[249] Huang H. Spinodal decomposition underlies evolution of nanoporosity in dealloying. MRS Bull 2001;26(6):431–2. link1

[250] Lee MN, Mohraz A. Hierarchically porous silver monoliths from colloidal bicontinuous interfacially jammed emulsion gels. J Am Chem Soc 2011;133 (18):6945–7. link1

[251] Mohraz A, Thorson TJ. Post-processing Bijels for applications. In: Clegg PS, editor. Bijels: bicontinuous particle-stabilized emulsions. London: The Royal Society of Chemistry; 2020. p. 34–60. link1

[252] Wu Q, Vaziri A, Asl ME, Ghosh R, Gao Y, Wei X, et al. Lattice materials with pyramidal hierarchy: systematic analysis and three dimensional failure mechanism maps. J Mech Phys Solids 2019;125:112–44. link1

[253] Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR. Resilient 3D hierarchical architected metamaterials. Proc Natl Acad Sci USA 2015;112 (37):11502–7. link1

[254] Huang X, Yang J, Bai L, Wang X, Ren X. Theoretical solutions for auxetic laminated beam subjected to a sudden load. Structures 2020;28:57–68. link1

[255] Hawreliak JA, Lind J, Maddox B, Barham M, Messner M, Barton N, et al. Dynamic behavior of engineered lattice materials. Sci Rep 2016;6(1):28094. link1

[256] Momeni F, Hassani.N SMM, Liu X, Ni J. A review of 4D printing. Mater Des 2017;122:42–79.

[257] Boley JW, van Rees WM, Lissandrello C, Horenstein MN, Truby RL, Kotikian A, et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci USA 2019;116(42):20856–62. link1

[258] Bessa MA, Glowacki P, Houlder M. Bayesian machine learning in metamaterial design: fragile becomes supercompressible. Adv Mater 2019;31(48):1904845. link1

[259] Le QV, Ranzato MA, Monga R, Devin M, Chen K, Corrado GS, et al. Building high-level features using large scale unsupervised learning. In: Proceedings of the 29th International Conference on Machine Learning; 2012 Jun 26–Jul 1; Edinburgh, Scotland; 2012. p. 81–8. link1

[260] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88. link1

[261] Deng L, Li J, Huang JT, Yao K, Yu D, Seide F, et al. Recent advances in deep learning for speech recognition at Microsoft. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing; 2013 May 26–31; Vancouver, BC, Canada; 2013. p. 8604–8. link1

[262] Hanakata PZ, Cubuk ED, Campbell DK, Park HS. Accelerated search and design of stretchable graphene kirigami using machine learning. Phys Rev Lett 2018;121(25):255304. link1

[263] Gu GX, Chen CT, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horiz 2018;5(5):939–45. link1

[264] Liu F, Jiang X, Wang X, Wang L. Machine learning-based design and optimization of curved beams for multistable structures and metamaterials. Extreme Mech Lett 2020;41:101002. link1

Related Research