Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 24, Issue 5 doi: 10.1016/j.eng.2022.01.003

Addressing the Global Challenges of COVID-19 and other Pulmonary Diseases with Microfluidic Technology

a Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
b Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
c Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, NC 27710, USA

Available online: 2022-01-27

Next Previous

Figures

Fig. 1

References

[ 1 ] Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708‒20. link1

[ 2 ] Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020;17(9):543‒58. link1

[ 3 ] Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al. Neurological associations of COVID-19. Lancet Neurol 2020;19(9):767‒83. link1

[ 4 ] Qi A, Friend JR, Yeo LY, Morton DAV, Mclntosh MP, Spiccia L. Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. Lab Chip 2009;9(15):2184‒93. link1

[ 5 ] Ramesan S, Rezk AR, Yeo LY. High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. Lab Chip 2018;18(21):3272‒84. link1

[ 6 ] Xie Y, Lu L, Tang XX, Moninger TO, Huang TJ, Stoltz DA, et al. Acidic submucosal gland pH and elevated protein concentration produce abnormal cystic fibrosis mucus. Dev Cell 2020;54(4):488‒500.e5. link1

[ 7 ] Wang Y, Ruan Q, Lei ZC, Lin SC, Zhu Z, Zhou L, et al. Highly sensitive and automated surface enhanced Raman scattering-based immunoassay for H5N1 detection with digital microfluidics. Anal Chem 2018;90(8):5224‒31. link1

[ 8 ] Wang R, Zhao R, Li Y, Kong W, Guo X, Yang Y, et al. Rapid detection of multiple respiratory viruses based on microfluidic isothermal amplification and a real-time colorimetric method. Lab Chip 2018;18(22):3507‒15. link1

[ 9 ] Ramachandran A, Huyke DA, Sharma E, Sahoo MK, Huang C, Banaei N, et al. Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2. Proc Natl Acad Sci USA 2020;117(47):29518‒25. link1

[10] Ozcelik A, Rufo J, Guo F, Gu Y, Li P, Lata J, et al. Acoustic tweezers for the life sciences. Nat Methods 2018;15(12):1021‒8. link1

[11] Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 1999;17(11):1109‒11. link1

[12] Farshidfar N, Hamedani S. The potential role of smartphone-based microfluidic systems for rapid detection of COVID-19 using saliva specimen. Mol Diagn Ther 2020;24(4):371‒3. link1

[13] Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet 2019;20(5):257‒72. link1

[14] Klein A, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161(5):1187‒201. link1

[15] Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015;161(5):1202‒14. link1

[16] Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018;560(7718):319‒24. link1

[17] Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 2018;560(7718):377‒81. link1

[18] Woodruff MC, Ramonell RP, Nguyen DC, Cashman KS, Saini AS, Haddad NS, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol 2020;21(12):1506‒16. link1

[19] Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 2015;6:8686. link1

[20] Li S, Guo F, Chen Y, Ding X, Li P, Wang L, et al. Standing surface acoustic wave based cell coculture. Anal Chem 2014;86(19):9853‒9. link1

[21] Park SE, Georgescu A, Huh D. Organoids-on-a-chip. Science 2019;364(6444):960‒5. link1

[22] Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la O SM, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 2020;588(7839):670‒5. link1

[23] Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, et al. Long-term expanding human airway organoids for disease modeling. EMBO J 2019;38(4):e100300. link1

[24] Ao Z, Cai H, Wu Z, Ott J, Wang H, Mackie K, et al. Controllable fusion of human brain organoids using acoustofluidics. Lab Chip 2021;21(4):688‒99. link1

[25] Deng J, Tian F, Liu C, Liu Y, Zhao S, Fu T, et al. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J Am Chem Soc 2021;143(19):7261‒6. link1

[26] Andargie TE, Tsuji N, Seifuddin F, Jang MK, Yuen PST, Kong H, et al. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight 2021;6(7):e147610. link1

[27] Szpechcinski A, Chorostowska-Wynimko J, Struniawski R, Kupis W, Rudzinski P, Langfort R, et al. Cell-free DNA levels in plasma of patients with non-small-cell lung cancer and inflammatory lung disease. Br J Cancer 2015;113(3):476‒83. link1

[28] Rosell A, Havervall S, von Meijenfeldt F, Hisada Y, Aguilera K, Grover SP, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arterioscler Thromb Vasc Biol 2021;41(2):878‒82. link1

[29] Holtzman J, Lee H. Emerging role of extracellular vesicles in the respiratory system. Exp Mol Med 2020;52(6):887‒95. link1

[30] Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci USA 2017;114(40):10584‒9. link1

[31] Chen Y, Li P, Huang PH, Xie Y, Mai JD, Wang L, et al. Rare cell isolation and analysis in microfluidics. Lab Chip 2014;14(4):626‒45. link1

[32] Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, et al. Microfluidic-based virus detection methods for respiratory diseases. Emergent Mater 2021;4(1):143‒68. link1

[33] Pinheiro T, Cardoso AR, Sousa CEA, Marques AC, Tavares APM, Matos AM, et al. Paper-based biosensors for COVID-19: a review of innovative tools for controlling the pandemic. ACS Omega 2021;6(44):29268‒90. link1

[34] Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, et al. Centrifugal microfluidics for biomedical applications. Lab Chip 2010;10(14):1758‒73. link1

[35] Wu D, Qin J, Lin B. Electrophoretic separations on microfluidic chips. J Chromatogr A 2008;1184(1‒2):542‒59.

Related Research