Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 14, Issue 7 doi: 10.1016/j.eng.2022.01.009

A Future Perspective on In-Sensor Computing

a Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

b Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

Available online: 2022-07-20

Next Previous

Figures

Fig. 1

References

[ 1 ] Chai Y. In-sensor computing for machine vision. Nature 2020;579(7797):32–3. link1

[ 2 ] Zhou F, Chai Y. Near-sensor and in-sensor computing. Nat Electron 2020;3 (11):664–71. link1

[ 3 ] Mead CA, Mahowald MA. A Silicon model of early visual processing. Neural Netw 1988;1(1):91–7. link1

[ 4 ] Liu L, Wu N. Artificial intelligent vision chip. Micro/nano Electron Intell Manuf 2019;1:12–9. Chinese. link1

[ 5 ] Liao F, Zhou F, Chai Y. Neuromorphic vision sensors: principle, progress and perspectives. J Semicond 2021;42(1):013105.

[ 6 ] Wan T, Ma S, Liao F, Fan L, Chai Y. Neuromorphic sensory computing. Sci China Inf Sci 2022;65:141401. link1

[ 7 ] Wu N. Neuromorphic vision chips. Sci China Inf Sci 2018;61:060421. link1

[ 8 ] Komuro T, Kagami S, Ishikawa M. A dynamically reconfigurable SIMD processor for a vision chip. IEEE J Solid-State Circuits 2004;39(1):265–8. link1

[ 9 ] Jendernalik W, Blakiewicz G, Jakusz J, Szczepanski S, Piotrowski R. An analog sub-miliwatt CMOS image sensor with pixel-level convolution processing. IEEE Trans Circuits Syst I Regul Pap 2013;60(2):279–89. link1

[10] Shi C, Yang J, Han Y, Cao Z, Qin Q, Liu L, et al. A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network. IEEE J Solid-State Circuits 2014;49(9):2067–82. link1

[11] Feng P, Liu L, Wu N. Photoelectric and 3D integrated artificial intelligent vision chip. Micro/nano Electron Intell Manuf 2019;1:75–84. Chinese. link1

[12] Yamazaki T, Katayama H, Uehara S, Nose A, Kobayashi M, Shida S, et al. 4.9 A 1 ms high-speed vision chip with 3D-stacked 140GOPS column-parallel PEs for spatio-temporal image processing. In: Proceedings of 2017 IEEE International Solid-State Circuits Conference (ISSCC); 2017 Feb 5–9; San Francisco, CA, USA. New York: IEEE; 2017. p. 82–3. link1

[13] Amir MF, Ko JH, Na T, Kim D, Mukhopadhyay S. 3D stacked image sensor with deep neural network computation. IEEE Sens J 2018;18(10):4187–99. link1

[14] Lie D, Chae K, Mukhopadhyay S. Analysis of the performance, power, and noise characteristics of a CMOS image sensor with 3D integrated image compression unit. IEEE Trans Compon Packaging Manuf Technol 2014;4(2):198–208. link1

[15] Zhang J, Dai S, Zhao Y, Zhang J, Huang J. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst 2020;2(3):1900136. link1

[16] Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B, et al. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl Mater Interfaces 2018;10(25):21472–80. link1

[17] Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, et al. An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 2019;13(2):2634–42. link1

[18] Hu DC, Yang R, Jiang L, Guo X. Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction. ACS Appl Mater Interfaces 2018;10(7):6463–70. link1

[19] Kumar M, Abbas S, Kim J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl Mater Interfaces 2018;10 (40):34370–6. link1

[20] Lee M, Lee W, Choi S, Jo JW, Kim J, Park SK, et al. Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv Mater 2017;29(28):1700951. link1

[21] He HK, Yang R, Zhou W, Huang HM, Xiong J, Gan L, et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 2018;14(15):e1800079. link1

[22] Wu JY, Chun YT, Li S, Zhang T, Wang J, Shrestha PK, et al. Broadband MoS2 fieldeffect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv Mater 2018;30(7):1705880. link1

[23] Matsuo S. Heterogeneously integrated III–V photonic devices on Si. Semicond Semimetals 2019;101:43–89. link1

[24] Teichert C. Self-organization of nanostructures in semiconductor heteroepitaxy. Phys Rep 2002;365(5–6):335–432. link1

[25] Benaissa L, Di Cioccio L, Beilliard Y, Coudrain P, Dominguez S, Balan V, et al. Next generation image sensor via direct hybrid bonding. In: Proceedings of 17th IEEE Electronics Packaging and Technology Conference (EPTC); 2015 Dec 2–4; Singapore. New York: IEEE; 2015. p. 1–3. link1

[26] Nau S, Wolf C, Sax S, List-Kratochvil EJ. Organic non-volatile resistive photoswitches for flexible image detector arrays. Adv Mater 2015;27(6):1048–52. link1

[27] Wang H, Liu H, Zhao Q, Ni Z, Zou Y, Yang J, et al. A retina-like dual band organic photosensor array for filter-free near-infrared-to-memory operations. Adv Mater 2017;29(32):1701772. link1

[28] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater 2018;30(46):e1803961. link1

[29] Mennel L, Symonowicz J, Wachter S, Polyushkin DK, Molina-Mendoza AJ, Mueller T. Ultrafast machine vision with 2D material neural network image sensors. Nature 2020;579(7797):62–6. link1

[30] Shawkat MSA, Sayyarparaju S, McFarlane N, Rose GS. Single photon avalanche diode based vision sensor with on-chip memristive spiking neuromorphic processing. In: Proceedings of 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS); 2020 Aug 9–12; Springfielf, MA, USA. New York: IEEE; 2020. p. 377–80. link1

[31] Sayyaparaju S, Weiss R, Rose GS. A mixed-mode neuron with on-chip tunability for generic use in memristive neuromorphic systems. In: Proceedings of 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI); 2018 Jul 8–11; Hong Kong, China. New York: IEEE; 2018. p. 441–6. link1

Related Research