Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 20, Issue 1 doi: 10.1016/j.eng.2022.01.016

Sodium Nitrate Passivation as a Novel Insulation Technology for Soft Magnetic Composites

a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

b School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China

c National Institute for Materials Science, Tsukuba 305-0047, Japan

Received: 2021-07-02 Revised: 2021-12-13 Accepted: 2022-01-25 Available online: 2022-11-08

Next Previous

Abstract

 Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO3 solution is found to contain Fe2O3, SiO2, Al2O3, and AlO(OH). The Fe2O3 transforms into Fe3O4 with weakened oxidizability of the NO3 at an elevated pH, whereas an alkaline NaNO3 solution leads to the production of Al2O3, AlO(OH), and SiO2. Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Silveyra JM, Ferrara E, Huber DL, Monson TC. Soft magnetic materials for a sustainable and electrified world. Science 2018;362(6413):eaao0195. link1

[ 2 ] Périgo EA, Weidenfeller B, Kollár P, Füzer J. Past, present, and future of soft magnetic composites. Appl Phys Rev 2018;5(3):031301. link1

[ 3 ] Li W, Cai H, Kang Y, Ying Y, Yu J, Zheng J, et al. High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications. Acta Mater 2019;167:267–74. link1

[ 4 ] Talaat A, Suraj MV, Byerly K, Wang A, Wang Y, Lee JK, et al. Review on soft magnetic metal and inorganic oxide nanocomposites for power applications. J Alloys Compd 2021;870:159500. link1

[ 5 ] Hossein Taghvaei A, Ebrahimi A, Gheisari K, Janghorban K. Analysis of the magnetic losses in iron-based soft magnetic composites with MgO insulation produced by sol–gel method. J Magn Magn Mater 2010;322(23):3748–54. link1

[ 6 ] Pang YX, Hodgson SNB, Weglinski B, Gaworska D. Investigations into sol–gel silica and silica hybrid coatings for dielectromagnetic soft magnetic composite applications. J Mater Sci 2006;41(18):5926–36. link1

[ 7 ] Peng Y, Yi Y, Li L, Yi J, Nie J, Bao C. Iron-based soft magnetic composites with Al2O3 insulation coating produced using sol–gel method. Mater Des 2016;109:390–5. link1

[ 8 ] Li L, Chen Q, Gao Z, Ge Y, Yi J. Fe@SiO2@(MnZn)Fe2O4 soft magnetic composites with enhanced permeability and low core loss for high-frequency applications. J Alloys Compd 2019;805:609–16. link1

[ 9 ] Zhao G, Wu C, Yan M. Fabrication and growth mechanism of iron oxide insulation matrix for Fe soft magnetic composites with high permeability and low core loss. J Alloys Compd 2017;710:138–43. link1

[10] Neamtu BV, Pszola M, Vermesan H, Stoian G, Grigoras M, Opris A, et al. Preparation and characterisation of Fe/Fe3O4 fibres based soft magnetic composites. Ceram Int 2021;47(1):581–9. link1

[11] Chen Y, Zhang L, Sun H, Chen F, Zhang P, Qu X, et al. Enhanced magnetic properties of iron-based soft magnetic composites with phosphate–polyimide insulating layer. J Alloys Compd 2020;813:152205. link1

[12] Taghvaei AH, Shokrollahi H, Janghorban K, Abiri H. Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites. Mater Des 2009;30(10):3989–95. link1

[13] Taghvaei AH, Shokrollahi H, Janghorban K. Properties of iron-based soft magnetic composite with iron phosphate–silane insulation coating. J Alloys Compd 2009;481(1–2):681–6. link1

[14] Zhang SY, Li SJ, Luo XW, Zhou WF. Mechanism of the significant improvement in corrosion protection by lowering water sorption of the coating. Corros Sci 2000;42(12):2037–41. link1

[15] Pu H, Jiang F, Yang Z. Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films. Mater Lett 2006;60 (1):94–7. link1

[16] Zhao N, He C, Liu J, Gong H, An T, Xu H, et al. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions. J Solid State Chem 2014;219:67–73. link1

[17] Gotic´ M, Drazˇic´ G, Music´ S. Hydrothermal synthesis of a-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+. J Mol Struct 2011;993(1–3):167–76. link1

[18] Padmaja P, Anilkumar GM, Mukundan P, Aruldhas G, Warrier KGK. Characterisation of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy. Int J Inorg Mater 2001;3(7):693–8. link1

[19] Pang SF, Wu CQ, Zhang QN, Zhang YH. The structural evolution of magnesium acetate complex in aerosols by FTIR–ATR spectra. J Mol Struct 2015;1087:46–50. link1

[20] Urlaub R, Posset U, Thull R. FT-IR spectroscopic investigations on sol–gelderived coatings from acid-modified titanium alkoxides. J Non-Cryst Solids 2000;265(3):276–84. link1

[21] Nasrazadani S. The application of infrared spectroscopy to a study of phosphoric and tannic acids interactions with magnetite (Fe3O4), goethite (a-FeOOH) and lepidocrocite (c-FeOOH). Corros Sci 1997;39(10–11):1845–59. link1

[22] Lefèvre G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv Colloid Interface Sci 2004;107(2–3):109–23. link1

[23] Wijnja H, Schulthess CP. ATR–FTIR and DRIFT spectroscopy of carbonate species at the aged c-Al2O3/water interface. Spectrochim Acta A 1999;55 (4):861–72. link1

[24] Shen SC, Ng WK, Zhong ZY, Dong YC, Chia L, Tan RBH. Solid-based hydrothermal synthesis and characterization of alumina nanofibers with controllable aspect ratios. J Am Ceram Soc 2009;92(6):1311–6. link1

[25] Ruhi G, Modi OP, Sinha ASK, Singh IB. Effect of sintering temperatures on corrosion and wear properties of sol–gel alumina coatings on surface pretreated mild steel. Corros Sci 2008;50(3):639–49. link1

[26] Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv Colloid Interface Sci 2003;100–102:475–502. link1

[27] Nishimura T, Kodama T. Clarification of chemical state for alloying elements in iron rust using a binary-phase potantial–pH diagram and physical analyses. Corros Sci 2003;45(5):1073–84. link1

[28] Refait P, Génin JMR. The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros Sci 1993;34 (5):797–819. link1

[29] MacDonald DD, Butler P. The thermodynamics of the aluminum–water system at elevated temperatures. Corros Sci 1973;13(4):259–74. link1

[30] Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 1993;362(6423):834–6. link1

[31] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 2008;254(8):2441–9. link1

[32] Wannaparhun S, Seal S, Desai V. Surface chemistry of Nextel-720, alumina and Nextel-720/alumina ceramic matrix composite (CMC) using XPS—a tool for nano-spectroscopy. Appl Surf Sci 2002;185(3–4):183–96. link1

[33] O’Hare LA, Parbhoo B, Leadley SR. Development of a methodology for XPS curve-fitting of the Si 2p core level of siloxane materials. Surf Interface Anal 2004;36(10):1427–34. link1

[34] Hornetz B, Michel HJ, Halbritter J. ARXPS studies of SiO2–SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces. J Mater Res 1994;9:3088–94. link1

[35] Duval Y, Mielczarski JA, Pokrovsky OS, Mielczarski E, Ehrhardt JJ. Evidence of the existence of three types of species at the quartz–aqueous solution interface at pH 0–10: XPS surface group quantification and surface complexation modeling. J Phys Chem B 2002;106(11):2937–45. link1

[36] Friedrich A, Wilson DJ, Haussühl E, Winkler B, Morgenroth W, Refson K, et al. High-pressure properties of diaspore, AlO(OH). Phys Chem Miner 2007;34 (3):145–57. link1

[37] Bokhimi X, Sánchez-Valente J, Pedraza F. Crystallization of sol–gel boehmite via hydrothermal annealing. J Solid State Chem 2002;166(1):182–90. link1

[38] Paglia G, Bozˇin ES, Billinge SJL. Fine-scale nanostructure in c-Al2O3. Chem Mater 2006;18(14):3242–8. link1

[39] Paglia G, Buckley CE, Rohl AL, Hunter BA, Hart RD, Hanna JV, et al. Tetragonal structure model for boehmite-derived c-alumina. Phys Rev B 2003;68 (14):144110. link1

[40] MacDonald DD, Butler P. Passivity—the key to our metals-based civilization. Pure Appl Chem 1999;71(6):951–78. link1

[41] Dean JA. Lange’s handbook of chemistry. 15th ed. Columbus: McGraw-Hill Professional; 1998. link1

[42] Verdes G, Gout R, Castet S. Thermodynamic properties of the aluminate ion and of bayerite, boehmite, diaspore and gibbsite. Eur J Mineral 1992;4 (4):767–92. link1

[43] MacDonald DD, Englehardt GR. The point defect model for bi-layer passive films. ECS Trans 2010;28(24):123–44. link1

[44] MacDonald DD. The history of the point defect model for the passive state: a brief review of film growth aspects. Electrochim Acta 2011;56(4):1761–72. link1

[45] Wu ZY, Jiang Z, Fan XA, Zhou LJ, Wang WL, Xu K. Facile synthesis of Fe–6.5wt% Si/SiO2 soft magnetic composites as an efficient soft magnetic composite material at medium and high frequencies. J Alloys Compd 2018;742:90–8. link1

[46] Kollár P, Bircˇáková Z, Füzer J, Bureš R, Fáberová M. Power loss separation in Febased composite materials. J Magn Magn Mater 2013;327:146–50. link1

Related Research