Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 17, Issue 10 doi: 10.1016/j.eng.2022.03.019

A Planar 4-Bit Reconfigurable Antenna Array Based on the Design Philosophy of Information Metasurfaces

a State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
b The Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China

Received: 2021-10-11 Revised: 2022-02-17 Accepted: 2022-03-20 Available online: 2022-07-16

Next Previous

Abstract

Inspired by the design philosophy of information metasurfaces based on the digital coding concept, a planar 4-bit reconfigurable antenna array with low profile of 0.15 λ0 (where λ0 is the wavelength) is presented. The array is based on a digital coding radiation element consisting of a 1-bit magnetoelectric (ME) dipole and a miniaturized reflection-type phase shifter (RTPS). The proposed 1-bit ME dipole can provide two digital states of “0” and “1” (with 0° and 180° phase responses) over a wide frequency band by individually exciting its two symmetrical feeding ports. The designed RTPS is able to realize a relative phase shift of 173°. By digitally quantizing its phase in the range of 157.5°, additional eight digital states at intervals of 22.5° are obtained. To achieve low sidelobe levels, a 1:16 power divider based on the Taylor line source method is employed to feed the array. A prototype of the proposed 4-bit antenna array has been fabricated and tested, and the experimental results are in good agreement with the simulations. Scanning beams within a ±45° range were measured with a maximum realized gain of 13.4 dBi at 12 GHz. The sidelobe and cross-polarization levels are below –14.3 and –23 dB, respectively. Furthermore, the beam pointing error is within 0.8°, and the 3-dB gain bandwidth of the broadside beam is 25%. Due to its outstanding performance, the array holds potential for significant applications in radar and wireless communication systems.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

References

[ 1 ] Mailloux RJ. Phased array antenna handbook. 3rd ed. Norwood: Artech House; 2018. link1

[ 2 ] Stutzman WL, Thiele GA. Antenna theory and design. 3rd ed. Hoboken: John Wiley & Sons, Inc.; 2013. link1

[ 3 ] Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX 2020;1(1):1. link1

[ 4 ] Cui TJ, Li L, Liu S, Ma Q, Zhang L, Wan X, et al. Information metamaterial systems. iScience 2020;23(8):101403. link1

[ 5 ] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl 2014;3(10):e218. link1

[ 6 ] Wang ZX, Wu JW, Wu LW, Gou Y, Ma HF, Cheng Q, et al. High efficiency polarization-encoded holograms with ultrathin bilayer spin-decoupled information metasurfaces. Adv Opt Mater 2021;9(5):2001609. link1

[ 7 ] Zhang L, Chen XQ, Liu S, Zhang Q, Zhao J, Dai JY, et al. Space-time-coding digital metasurfaces. Nat Commun 2018;9(1):4334. link1

[ 8 ] Dai JY, Zhao J, Cheng Q, Cui TJ. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl 2018;7(1):90. link1

[ 9 ] Ma Q, Bai GD, Jing HB, Yang C, Li L, Cui TJ. Smart metasurface with selfadaptively reprogrammable functions. Light Sci Appl 2019;8(1):98. link1

[10] Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 2017;8(1):197. link1

[11] Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, et al. Machine-learning reprogrammable metasurface imager. Nat Commun 2019;10(1):1082. link1

[12] Wu JB, Shen Z, Ge SJ, Chen BW, Shen ZX, Wang TF, et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl Phys Lett 2020;116(13):131104. link1

[13] Zhao J, Yang X, Dai JY, Cheng Q, Li X, Qi NH, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev 2019;6(2):231–8. link1

[14] Cui TJ, Liu S, Bai GD, Ma Q. Direct transmission of digital message via programmable coding metasurface. Research 2019;2019:2584509. link1

[15] Zhang L, Chen MZ, Tang W, Dai JY, Miao L, Zhou XY, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electron 2021;4(3):218–27. link1

[16] Chen MZ, Tang WK, Dai JY, Ke JC, Zhang L, Zhang C, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Natl Sci Rev 2022;9(1):nwab134. link1

[17] Yang HH, Yang F, Xu SH, Mao YL, Li MK, Cao XY, et al. A 1-bit 10 10 reconfigurable reflectarray antenna: design, optimization, and experiment. IEEE Trans Antenn Propag 2016;64(6):2246–54. link1

[18] Yang HH, Yang F, Cao XY, Xu SH, Gao J, Chen XB, et al. A 1600-element dualfrequency electronically reconfigurable reflectarray at X/Ku-band. IEEE Trans Antenn Propag 2017;65(6):3024–32. link1

[19] Di Palma L, Clemente A, Dussopt L, Sauleau R, Potier P, Pouliguen P. Circularlypolarized reconfigurable transmitarray in Ka-band with beam scanning and polarization switching capabilities. IEEE Trans Antenn Propag 2017;65(2):529–40. link1

[20] Wang M, Xu SH, Yang F, Li MK. Design and measurement of a 1-bit reconfigurable transmitarray with subwavelength H-shaped coupling slot elements. IEEE Trans Antenn Propag 2019;67(5):3500–4. link1

[21] Wang Y, Xu SH, Yang F, Li MK. A novel 1 bit wide-angle beam scanning reconfigurable transmitarray antenna using an equivalent magnetic dipole element. IEEE Trans Antenn Propag 2020;68(7):5691–5. link1

[22] Hu J, Hao ZC, Wang Y. A wideband array antenna with 1-bit digitalcontrollable radiation beams. IEEE Access 2018;6:10858–66. link1

[23] Wang Q, Tian HW, Jiang WX, Chen MZ, Zhang XG, Cui TJ. An ultrawideband and dual-beam scanning array antenna charactered by coding method. IEEE Antennas Wirel Propag Lett 2020;19(12):2211–5. link1

[24] Zhang XG, Jiang WX, Tian HW, Wang ZX, Wang Q, Cui TJ. Patternreconfigurable planar array antenna characterized by digital coding method. IEEE Trans Antenn Propag 2020;68(2):1170–5. link1

[25] Chang L, Li Y, Zhang ZJ, Feng ZH. Reconfigurable 2-bit fixed-frequency beam steering array based on microstrip line. IEEE Trans Antenn Propag 2018;66 (2):683–91. link1

[26] Liu PQ, Li Y, Zhang ZJ. Circularly polarized 2 bit reconfigurable beam-steering antenna array. IEEE Trans Antenn Propag 2020;68(3):2416–21. link1

[27] Smith M, Guo Y. A comparison of methods for randomizing phase quantization errors in phased arrays. IEEE Trans Antenn Propag 1983;31(6):821–8. link1

[28] Jiang W, Guo YC, Liu TH, Shen WF, Cao W. Comparison of random phasing methods for reducing beam pointing errors in phased array. IEEE Trans Antenn Propag 2003;51(4):782–7. link1

[29] Luk KM, Wong H. A new wideband unidirectional antenna element. Int J Microw Opt Technol 2006;1(1):35–44. link1

[30] Luk KM, Wu BQ. The magnetoelectric dipole—a wideband antenna for base stations in mobile communications. Proc IEEE 2012;100(7):2297–307. link1

[31] Balanis CA, editor. Modern antenna handbook. Hoboken: John Wiley & Sons, Inc.; 2008

[32] Huang J. A technique for an array to generate circular polarization with linearly polarized elements. IEEE Trans Antenn Propag 1986;34 (9):1113–24. link1

[33] Hall PS, Dahele JS, James JR. Design principles of sequentially fed, wide bandwidth, circularly polarized microstrip antennas. IEE Proc H 1989;136(5):381–9. link1

[34] Hu J, Hao ZC. A compact polarization-reconfigurable and 2-D beam-switchable antenna using the spatial phase shift technique. IEEE Trans Antenn Propag 2018;66(10):4986–95. link1

[35] Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 2017;118(11):113901. link1

[36] Burdin F, Iskandar Z, Podevin F, Ferrari P. Design of compact reflection-type phase shifters with high figure-of-merit. IEEE Trans Microw Theory Tech 2015;63(6):1883–93. link1

[37] Singh A, Mandal MK. Electronically tunable reflection type phase shifters. IEEE Trans Circuits Syst II 2020;67(3):425–9. link1

[38] MADP-000907-14020W [Internet]. Lowell: MACOM Company; [cited 2021 Jul 9]. Available from: https://www.macom.com/products/product-detail/MADP000907-14020W. link1

[39] Discover Simulia [Internet]. Paris: Dassault Systèmes; [cited 2021 Jul 9]. Available from: https://www.cst.com/products/cstmws. link1

[40] Sun J, Li A, Luk KM. A high-gain millimeter-wave magnetoelectric dipole array with packaged microstrip line feed network. IEEE Antennas Wirel Propag Lett 2020;19(10):1669–73. link1

[41] MAVR-011020-1411 [Internet]. Lowell: MACOM Company; [cited 2021 Jul 9]. Available from: https://www.macom.com/products/product-detail/MAVR011020-1411. link1

[42] Pozar DM. Microwave engineering. 4th ed. Hoboken: John Wiley & Sons, Inc.; 2012. link1

Related Research