Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2022.04.002

Recent Advances in Printed Thin-Film Batteries

a Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
b Printed Energy Pty. Ltd., Brisbane, QLD 4001, Australia
c Printed Energy Pty. Ltd., Tempe, AZ 85284, USA
d Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

Received: 2020-09-13 Revised: 2021-03-13 Accepted: 2021-03-31 Available online: 2022-04-18

Next Previous

Abstract

The rapidly increasing demand for wearable electronic devices has motivated research in low-cost and flexible printed batteries with diverse form factors and architectures. In the past, technological achievements in the field have been emphasized, overlooking the industrial and market requirements. However, different applications require different battery chemistries and formats, that greatly impacts the manufacturing process and competition landscape. These chemistries and formats should therefore be selected carefully to maximize the chances for commercial success. As some of these technologies are starting to be marketed for portable electronics, there is a pressing need to evaluate different printing technologies and compare them in terms of the processing constraints and product requirements of specific electronic devices. By evaluating the intrinsic strengths and current limitations of printed battery technologies, development pathways can be prioritized, and potential bottlenecks can be overcome to accelerate the path to market.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

References

[ 1 ] Cheng M, Deivanayagam R, Shahbazian-Yassar R. 3D printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batter Supercaps 2020;3(2):130–46. link1

[ 2 ] Costa CM, Gonçalves R, Lanceros-Méndez S. Recent advances and future challenges in printed batteries. Energy Storage Mat 2020;28:216–34. link1

[ 3 ] Ahn DB, Lee SS, Lee KH, Kim JH, Lee JW, Lee SY. Form factor-free, printed power sources. Energy Storage Mat 2020;29:92–112. link1

[ 4 ] Liang Y, Zhao CZ, Yuan H, Chen Y, Zhang W, Huang JQ, et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019;1 (1):6–32. link1

[ 5 ] Yu X, Liu Y, Pham H, Sarkar S, Ludwig B, Chen IM, et al. Customizable nonplanar printing of lithium-ion batteries. Adv Mater Technol 2019;4 (11):1900645. link1

[ 6 ] Arias AC, Ready SE, Lujan R, Wong WS, Paul KE, Salleo A, et al. All jet-printed polymer thin-film transistor active-matrix backplanes. Appl Phys Lett 2004;85(15):3304–6. link1

[ 7 ] Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem Rev 2010;110(1):3–24. link1

[ 8 ] Street RA, Wong WS, Ready SE, Chabinyc ML, Arias AC, Limb S, et al. Jet printing flexible displays. Mater Today 2006;9(4):32–7. link1

[ 9 ] MacKenzie JD, Ho C. Perspectives on energy storage for flexible electronic systems. Proc IEEE 2015;103(4):535–53. link1

[10] Sousa RE, Costa CM, Lanceros-Méndez S. Advances and future challenges in printed batteries. ChemSusChem 2015;8(21):3539–55. link1

[11] Lanceros-Méndez S, Costa CM, editors. Printed batteries: materials, technologies and applications. Hoboken: John Wiley & Sons; 2018. link1

[12] Kim J, Kumar R, Bandodkar AJ, Wang J. Advanced materials for printed wearable electrochemical devices: a review. Adv Electron Mater 2017;3 (1):1600260. link1

[13] Gaikwad AM, Arias AC, Steingart DA. Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energy Technol 2015;3(4):305–28. link1

[14] Du CF, Liang Q, Luo Y, Zheng Y, Yan Q. Recent advances in printable secondary batteries. J Mater Chem A 2017;5(43):22442–58. link1

[15] Choi KH, Ahn DB, Lee SY. Current status and challenges in printed batteries: toward form factor-free, monolithic integrated power sources. ACS Energy Lett 2018;3(1):220–36. link1

[16] Borza PN, Machedon-Pisu M, Hamza-Lup F. Design of wireless sensors for IoT with energy storage and communication channel heterogeneity. Sensors 2019;19(15):3364. link1

[17] ADXL345 product overview [Internet]. Wilmington: Analog Devices, Inc.; [cited 2019 Jun 1]. Available from: https://www.analog.com/en/products/ adxl345.html#product-overview.

[18] Guan D, Yang F, Liu Q, Yu K, Sun J. A novel prototype of low power consumption MEMS sensors for hydrogen detection. In: Proceedings of the IEEE Sensors 2016 Conference; 2016 Oct 30–Nov 2; Orlando, FL, USA. Piscataway: IEEE; 2016.

[19] TLC227x. TLC227xA: advanced LinCMOS rail-to-rail operational amplifiers. Dallas: Texas Instruments Inc.; 2016.

[20] Bock DC, Marschilok AC, Takeuchi KJ, Takeuchi ES. Batteries used to power implantable biomedical devices. Electrochim Acta 2012;84:155–64. link1

[21] Bairanzade M. Smart card integration and specifications [Internet]. Cambridge: AspenCore, Inc.; 2002 Jun 13 [cited 2019 Jun 1]. Available from: https://www.eetimes.com/smart-card-integration-and-specifications.

[22] Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 2019;4(3):1800628. link1

[23] Liu X, Qian F. Measuring and optimizing android smartwatch energy consumption [poster]. In: MobiCom 2016: the 22nd Annual International Conference on Mobile Computing and Networking; 2016 Oct 3–7; New York City, NY, USA; 2016.

[24] Núñez CG, Manjakkal L, Dahiya R. Energy autonomous electronic skin. npj Flex Electron 2019;3:1.

[25] Pech D, Brunet M, Taberna PL, Simon P, Fabre N, Mesnilgrente F, et al. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 2010;195(4):1266–9. link1

[26] Xu Y, Schwab MG, Strudwick AJ, Hennig I, Feng X, Wu Z, et al. Screenprintable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv Energy Mater 2013;3(8):1035–40. link1

[27] Energy storage technologies [Internet]. Seven Hills: CAP-XX Ltd.; 2015 Apr 6 [cited 2019 Jun 1]. Available from: https://www.cap-xx.com/resource/ energy-storage-technologies/.

[28] Zhang H, Cao Y, Chee MOL, Dong P, Ye M, Shen J. Recent advances in microsupercapacitors. Nanoscale 2019;11(13):5807–21. link1

[29] Renner C, Jessen J, Turau V. Lifetime prediction for supercapacitor-powered wireless sensor nodes. Hamburg: Hamburg University of Technology; 2009. link1

[30] Zhu T, Gu Y, He T, Zhang ZL. eShare: a capacitor-driven energy storage and sharing network for long-term operation. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems; 2010 Nov 3–5; Zürich, Switzerland. New York City: Association for Computing Machinery; 2010.

[31] Andreas HA. Self-discharge in electrochemical capacitors: a perspective article. J Electrochem Soc 2015;162(5):A5047–53. link1

[32] Ha M, Park J, Lee Y, Ko H. Triboelectric generators and sensors for selfpowered wearable electronics. ACS Nano 2015;9(4):3421–7. link1

[33] Huebner G, Krebs M. Printed, flexible thin-film-batteries and other power storage devices. In: Logothetidis S, editor. Handbook of flexible organic electronics. Oxford: Woodhead Publishing; 2015. p. 429–47. link1

[34] Vindus B. Feasibility studie zum drucken von NiMH-akkumulatoren [dissertation]. Stuttgart: Stuttgart Media University; 2006. German. link1

[35] Kim SH, Choi KH, Cho SJ, Choi S, Park S, Lee SY. Printable solid-state lithiumion batteries: a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett 2015;15(8):5168–77. link1

[36] Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy ALM, et al. Paintable battery. Sci Rep 2012;2(1):481. link1

[37] Um HD, Choi KH, Hwang I, Kim SH, Seo K, Lee SY. Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ Sci 2017;10(4):931–40. link1

[38] Kang KY, Lee YG, Shin DO, Kim JC, Kim KM. Performance improvements of pouch-type flexible thin-film lithium-ion batteries by modifying sequential screen-printing process. Electrochim Acta 2014;138:294–301. link1

[39] Janoschka T, Teichler A, Häupler B, Jähnert T, Hager MD, Schubert US. Reactive inkjet printing of cathodes for organic radical batteries. Adv Energy Mater 2013;3(8):1025–8. link1

[40] Hilder M, Winther-Jensen B, Clark NB. Paper-based, printed zinc–air battery. J Power Sources 2009;194(2):1135–41. link1

[41] Lee YH, Kim JS, Noh J, Lee I, Kim HJ, Choi S, et al. Wearable textile battery rechargeable by solar energy. Nano Lett 2013;13(11):5753–61. link1

[42] Soroka W. Fundamentals of packaging technology. 4th ed. Lancaster: Destech Publications Inc.; 2009. link1

[43] Aluminum ink [Internet]. Los Angeles: American Elements; [cited 2019 Jun 1]. Available from: https://www.americanelements.com/aluminum-ink- 7429-90-5.

[44] Harness the power of nanotechnology for your business [Internet]. Madison Heights: Nano Magic, LLC; [cited 2019 Jun 1]. Available from: https:// www.nanomagic.com/ani/.

[45] Zenou M, Grainger L. Additive manufacturing of metallic materials. In: Zhang J, Jung YG, editors. Additive manufacturing: materials, processes, quantifications and applications. Amsterdam: Elsevier; 2018. p. 53–103. link1

[46] Kapton-polyimide-film [Internet]. Wilmington: DuPont; [cited 2020 Feb 1]. Available from: https://www.dupont.com/electronic-materials/kaptonpolyimide-film.html.

[47] Nakashima H, Higgins MJ, O’Connell C, Torimitsu K, Wallace GG. Liquid deposition patterning of conducting polymer ink onto hard and soft flexible substrates via dip-pen nanolithography. Langmuir 2012;28(1):804–11. link1

[48] Xiong Z, Liu C. Optimization of inkjet printed PEDOT:PSS thin films through annealing processes. Org Electron 2012;13(9):1532–40. link1

[49] Glatzel S, Schnepp Z, Giordano C. From paper to structured carbon electrodes by inkjet printing. Angew Chem Int Ed Engl 2013;52(8):2355–8. link1

[50] Small WR, In Het Panhuis M. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 2007;3 (9):1500–3. link1

[51] Pidcock GC, In Het Panhuis M. Extrusion printing of flexible electrically conducting carbon nanotube networks. Adv Funct Mater 2012;22 (22):4790–800. link1

[52] Mo L, Liu D, Li W, Li L, Wang L, Zhou X. Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films. Appl Surf Sci 2011;257(13):5746–53. link1

[53] Walker SB, Lewis JA. Reactive silver inks for patterning high-conductivity features at mild temperatures. J Am Chem Soc 2012;134(3):1419–21. link1

[54] Huang Q, Shen W, Song W. Synthesis of colourless silver precursor ink for printing conductive patterns on silicon nitride substrates. Appl Surf Sci 2012;258(19):7384–8. link1

[55] Choi KH, Lee SY. Design of printed batteries: from chemistry to aesthetics. In: Lanceros-Méndez S, Costa CM, editors. Printed batteries: materials, technologies and applications. Hoboken: John Wiley & Sons; 2018. p. 112–43. link1

[56] Mo L, Guo Z, Wang Z, Yang L, Fang Y, Xin Z, et al. Nano-silver ink of high conductivity and low sintering temperature for paper electronics. Nanoscale Res Lett 2019;14(1):197. link1

[57] Shen W, Zhang X, Huang Q, Xu Q, Song W. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014;6(3):1622–8. link1

[58] De A, Freire MT, Damant AP, Castle L, Reyes FGR. Thermal stability of polyethylene terephthalate (PET): oligomer distribution and formation of volatiles. Packag Technol Sci 1999;12(1):29–36. link1

[59] Wendler M, Hübner G, Krebs M. Development of printed thin and flexible batteries. Int Circ Graph Educ Res 2011;4:32–41. link1

[60] Luo S, Wang K, Wang J, Jiang K, Li Q, Fan S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv Mater 2012;24(17):2294–8. link1

[61] Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP. Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2009;2(6):638–54. link1

[62] Choi KH, Cho SJ, Chun SJ, Yoo JT, Lee CK, Kim W, et al. Heterolayered, onedimensional nanobuilding block mat batteries. Nano Lett 2014;14 (10):5677–86. link1

[63] Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance electrode materials. Adv Mater 2012;24(8):1089–94. link1

[64] Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, et al. Siliconconductive nanopaper for Li-ion batteries. Nano Energy 2013;2(1):138–45. link1

[65] Chen Z, To JWF, Wang C, Lu Z, Liu N, Chortos A, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater 2014;4 (12):1400207. link1

[66] Lima MD, Fang S, Lepró X, Lewis C, Ovalle-Robles R, Carretero-González J, et al. Biscrolling nanotube sheets and functional guests into yarns. Science 2011;331(6013):51–5. link1

[67] Lee JK, Smith KB, Hayner CM, Kung HH. Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun 2010;46(12):2025–7. link1

[68] Liu B, Soares P, Checkles C, Zhao Y, Yu G. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 2013;13(7):3414–9. link1

[69] Li N, Chen Z, Ren W, Li F, Cheng HM. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci USA 2012;109(43):17360–5. link1

[70] Li X, Yang J, Hu Y, Wang J, Li Y, Cai M, et al. Novel approach toward a binder-free and current collector-free anode configuration: highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. J Mater Chem 2012;22(36): 18847–53. link1

[71] Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, et al. Hierarchical threedimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 2012;12 (6):3005–11. link1

[72] Fu K, Yildiz O, Bhanushali H, Wang Y, Stano K, Xue L, et al. Aligned carbon nanotube–silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes. Adv Mater 2013;25(36):5109–14. link1

[73] Liu B, Wang X, Chen H, Wang Z, Chen D, Cheng YB, et al. Hierarchical silicon nanowires–carbon textiles matrix as a binder-free anode for highperformance advanced lithium-ion batteries. Sci Rep 2013;3(1):1622. link1

[74] Jia X, Chen Z, Suwarnasarn A, Rice L, Wang X, Sohn H, et al. High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ Sci 2012;5(5):6845–9. link1

[75] LeVine S. The story of the invention that could revolutionize batteries—and maybe American manufacturing as well [Internet]. New York City: Quartz; 2015 Jun 22 [cited 2019 Jun 1]. Available from: https://qz.com/433131/ the-story-of-the-invention-that-could-revolutionize-batteries-and-maybeamerican-manufacturing-as-well/.

[76] Cobb CL, Ho CC. Additive manufacturing: rethinking battery design. Electrochem Soc Interface 2016;25(1):75–8. link1

[77] Braam K, Subramanian V. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator. Adv Mater 2015;27(4):689–94. link1

[78] Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 2013;25(33):4539–43. link1

[79] Wang Z, Winslow R, Madan D, Wright PK, Evans JW, Keif M, et al. Development of MnO2 cathode inks for flexographically printed rechargeable zinc-based battery. J Power Sources 2014;268:246–54. link1

[80] Koo M, Park KI, Lee SH, Suh M, Jeon DY, Choi JW, et al. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett 2012;12 (9):4810–6. link1

[81] Kutbee AT, Ghoneim MT, Ahmad SM, Hussain MM. Free-form flexible lithium-ion microbattery. IEEE Trans Nanotechnol 2016;15(3):402–8. link1

[82] Park MS, Hyun SH, Nam SC. Mechanical and electrical properties of a LiCoO2 cathode prepared by screen-printing for a lithium-ion micro-battery. Electrochim Acta 2007;52(28):7895–902. link1

[83] Hagedorn R. Optimierung einer im Siebdruck hergestellten elektrochemischen Zelle [dissertation]. Stuttgart: Stuttgart Media University; 2009. German.

[84] Krebs H, Yang L, Shirshova N, Steinke JHG. A new series of cross-linked (meth) acrylate polymer electrolytes for energy storage. React Funct Polym 2012;72 (12):931–8. link1

[85] Kot E, Shirshova N, Bismarck A, Steinke JHG. Non-aqueous high internal phase emulsion templates for synthesis of macroporous polymers in situ filled with cyclic carbonate electrolytes. RSC Adv 2014;4(22):11512–9. link1

[86] Shirshova N, Bismarck A, Steinke JH. Ionic liquids as internal phase for nonaqueous polyHIPEs. Macromol Rapid Commun 2011;32(23):1899–904. link1

[87] Shirshova N, Johansson P, Marczewski MJ, Kot E, Ensling D, Bismarck A, et al. Polymerised high internal phase ionic liquid-in-oil emulsions as potential separators for lithium ion batteries. J Mater Chem A 2013;1(34):9612–9. link1

[88] Hiralal P, Imaizumi S, Unalan HE, Matsumoto H, Minagawa M, Rouvala M, et al. Nanomaterial-enhanced all-solid flexible zinc–carbon batteries. ACS Nano 2010;4(5):2730–4. link1

[89] Choi BK, Shin KH, Kim YW. Lithium ion conduction in PEO–salt electrolytes gelled with PAN. Solid State Ion 1998;113–115:123–7. link1

[90] Ollinger M, Kim H, Sutto T, Piqué A. Laser printing of nanocomposite solidstate electrolyte membranes for Li micro-batteries. Appl Surf Sci 2006;252 (23):8212–6. link1

[91] Prasanth R, Aravindan V, Srinivasan M. Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/ poly(methyl methacrylate)/polystyrene for lithium ion batteries— preparation and electrochemical characterization. J Power Sources 2012;202:299–307. link1

[92] Idris NH, Rahman MM, Wang JZ, Liu HK. Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 2012;201:294–300. link1

[93] Fu J, Lee DU, Hassan FM, Yang L, Bai Z, Park MG, et al. Flexible high-energy polymer-electrolyte-based rechargeable zinc–air batteries. Adv Mater 2015;27(37):5617–22. link1

[94] Gaikwad AM, Steingart DA, Nga Ng T, Schwartz DE, Whiting GL. A flexible high potential printed battery for powering printed electronics. Appl Phys Lett 2013;102(23):233302. link1

[95] Berchmans S, Bandodkar AJ, Jia W, Ramírez J, Meng YS, Wang J. An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J Mater Chem A 2014;2(38):15788–95. link1

[96] Tehrani Z, Korochkina T, Govindarajan S, Thomas DJ, O’Mahony J, Kettle J, et al. Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications. Org Electron 2015;26:386–94. link1

[97] Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, et al. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater 2013;25(10):1395–400. link1

[98] Braam KT, Volkman SK, Subramanian V. Characterization and optimization of a printed, primary silver–zinc battery. J Power Sources 2012;199:367–72. link1

[99] Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 2016;28(13):2587–94. link1

[100] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104(10):4303–418. link1

[101] Gray F, Armand M. Polymer electrolytes. In: Daniel C, Besenhard JO, editors. Handbook of battery materials. Hoboken: John Wiley & Sons; 2011. p. 627–56. link1

[102] Gray F, Armand M. Polymer electrolytes. In: Besenhard JO, editor. Handbook of battery materials. Hoboken: John Wiley & Sons; 1998. p. 499–523. link1

[103] Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A 2016;4(26):10038–69. link1

[104] Reddy TB. Linden’s handbook of batteries. 4th ed. New York City: McGrawHill; 2011. link1

[105] Delannoy PE, Riou B, Lestriez B, Guyomard D, Brousse T, Le Bideau J. Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. J Power Sources 2015;274:1085–90. link1

[106] Lockett VN, Gustafson JG, Ray WJ, Salah, Y, inventors; Printed Energy Pty. Ltd., assignee. Diatomaceous energy storage devices. United States patent US 20190051909A1. 2019 Feb 14.

[107] Porcher W, Lestriez B, Jouanneau S, Guyomard D. Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery. J Electrochem Soc 2009;156(3):A133–44. link1

[108] Cho KY, Kwon YI, Youn JR, Song YS. Interaction analysis between binder and particles in multiphase slurries. Analyst 2013;138(7):2044–50. link1

[109] Bitsch B, Dittmann J, Schmitt M, Scharfer P, Schabel W, Willenbacher N. A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties. J Power Sources 2014;265:81–90. link1

[110] Wicks Z, Jones FN. Coatings. In: Othmer K, editor. Encyclopedia of chemical technology. Hoboken: John Wiley & Sons; 2013. p. 1–86. link1

[111] Ligneel E, Lestriez B, Hudhomme A, Guyomard D. Effects of the solvent concentration (solid loading) on the processing and properties of the composite electrode. J Electrochem Soc 2007;154(3):A235–41. link1

[112] Zhu M, Park J, Sastry AM. Particle interaction and aggregation in cathode material of Li-ion batteries: a numerical study. J Electrochem Soc 2011;158 (10):A1155–9. link1

[113] Choi KH, Yoo J, Lee CK, Lee SY. All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 2016;9(9):2812–21. link1

[114] Gores HJ, Barthel J, Zugmann S, Moosbauer D, Amereller M, Hartl R, et al. Liquid nonaqueous electrolytes. In: Daniel C, Besenhard JO, editors. Handbook of battery materials. Hoboken: John Wiley & Sons; 2011. p. 525–626. link1

[115] Masahiko Y, Toshiyuki F, Hideki S, inventors; Mitsubishi Chemical Corp, assignee. Process for purifying ethylene carbonate, process for producing purified ethylene carbonate, and ethylene carbonate. United States patent US 20090221840A1. 2009 Sep 3.

[116] Steingart D, Ho CC, Salminen J, Evans JW, Wright PK. Dispenser printing of solid polymer–ionic liquid electrolytes for lithium ion cells. In: Proceedings of the 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics; 2007 Jan 15–18; Tokyo, Japan. Piscataway: IEEE; 2007.

[117] Rechargeable button cells NiMH: sales program and technical handbook. Ellwangen: VARTA Microbattery GmbH; 2018.

[118] Bates J, Dudney N, Neudecker B, Ueda A, Evans C. Thin-film lithium and lithium-ion batteries. Solid State Ion 2000;135(1–4):33–45. link1

[119] Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J Power Sources 1993;43(1–3):103–10. link1

[120] Choi CH, Cho WI, Cho BW, Kim HS, Yoon YS, Tak YS. Radio-frequency magnetron sputtering power effect on the ionic conductivities of LiPON films. Electrochem Solid-State Lett 2002;5(1):A14–7. link1

[121] Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films. Solid State Ion 2006;177(3–4):257–61. link1

[122] Song J, West W. All solid-state thin film batteries. In: Dudney NJ, West WC, Nanda J, editors. Handbook of solid state batteries. Singapore: World Scientific; 2015. p. 593–625. link1

[123] Choi KH, Jeong JA, Kang JW, Kim DG, Kim JK, Na SI, et al. Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells. Sol Energy Mater Sol Cells 2009;93(8):1248–55. link1

[124] Lim JW, Oh SI, Eun K, Choa SH, Koo HW, Kim TW, et al. Mechanical flexibility of ZnSnO/Ag/ZnSnO films grown by roll-to-roll sputtering for flexible organic photovoltaics. Jpn J Appl Phys 2012;51(11R):115801. link1

[125] Carcia PF, McLean RS, Reilly MH, Li ZG, Pillione LJ, Messier RF. Low-stress indium–tin–oxide thin films rf magnetron sputtered on polyester substrates. Appl Phys Lett 2002;81(10):1800–2. link1

[126] Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures. Chem Rev 2004;104(10):4463–92. link1

[127] Kushida K, Kuriyama K, Nozaki T. Hundred-micron-sized all-solid-state Li secondary battery arrays embedded in a Si substrate. Appl Phys Lett 2002;81 (26):5066–8. link1

[128] ProLogium Technology. ProLogium, the world leader in solid-state battery, won the CES 2019 innovation award [Internet]. Chicago: Cision US Inc.; 2018 Dec 17 [cited 2019 Jun 1]. Available from: https://www.prnewswire.com/ news-releases/prologium-the-world-leader-in-solid-state-battery-won-theces-2019-innovation-award-300767864.html.

[129] FLCB (FPC lithium ceramic battery) [Internet]. Taipei: ProLogium Technology Co., Ltd.; [cited 2019 Jun 1]. Available from: https://www.computex.biz/ ProLogium/default.aspx?com_id=8423&pdt_id=62100&PageType=Product Detail&ContentTab= Introduction.

[130] Lux Research. Apple’s printed battery acquisition likely to disappoint [Internet]. Los Angeles: GlobeNewswire, Inc.; 2015 Sep 29 [cited 2019 Jun 1]. Available from: https://www.globenewswire.com/news-release/2015/09/ 29/920841/0/en/Apple-s-Printed-Battery-Acquisition-Likely-to-Disappoint. html.

[131] Vlad A, Singh N, Galande C, Ajayan PM. Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Mater 2015;5(19):1402115. link1

[132] Create best curved polymer battery cell for wearables prototype—LiPOL [Internet]. Shenzhen: LiPol Battery Co., Ltd.; [cited 2019 Jun 1]. Available from: https://www.lipoly-battery.com/curved-polymer-battery/.

[133] LG Chem ESS battery [Internet]. Melbourne: Consolidated Energy; [cited 2019 Jun 1]. Available from: https://www.consolidatedenergy.com.au/lgchem-ess-battery.

[134] Ultra-thin Li-ion series [Internet]. Guangzhou: Guangzhou Fullriver Battery New Technology Co., Ltd.; [cited 2019 Jun 1]. Available from: http://www. fentbattery.com/tech/encbsectors.html.

[135] Utlra thin battery: full fill your space for more working time [Internet]. Shenzhen: Shenzhen Grepow Battery Co., Ltd.; [cited 2019 Jun 1]. Available from: https://www.grepow.com/page/ultra-thin-battery.html.

[136] Pillot C. The rechargeable battery market and main trends 2014– 2025. Pairs: Avicienne Energy; 2015. link1

[137] Electricity storage association storage comparison charts [Internet]. Washington, DC: American Chemical Society; [cited 2019 Jun 1]. Available from: https://www.acs.org/content/dam/acsorg/policy/acsonthehill/briefings/ electricity/electricity-storage-association-storage-comparison-charts.pdf.

[138] Wu Z, Liu K, Lv C, Zhong S, Wang Q, Liu T, et al. Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 2018;14(22):1800414. link1

[139] Gao Y, Zhou R, Wang D, Huang Q, Cheng CH, Zheng Z. Boosting the energy density of flexible asymmetric supercapacitor with three dimensional Fe2O3 composite brush anode. Chem Res Chin Univ 2020;36(1):97–104. link1

[140] Hu Y, Sun X. Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2014;2 (28):10712–38. link1

[141] LG Chem to mass produce cable batteries in the near future [Internet]. Seoul: Yonhap News Agency; 2013 Oct 8 [cited 2019 Jun 1]. Available from: https:// en.yna.co.kr/view/AEN20131008008100320.

[142] ZincPolyTM 8349 battery specification part number: ZP-P-30-8349-0001. Alameda: Imprint Energy Inc.; 2019.

[143] Akuto K, Ogata T. Ultra-thin sealed lead-acid batteries. In: Proceedings of the 12th International Conference on Telecommunications Energy; 1990 Oct 22– 25; Orlando, FL, USA. Piscataway: IEEE; 1990. link1

[144] Ponrouch A, Bitenc J, Dominko R, Lindahl N, Johansson P, Palacin MR. Multivalent rechargeable batteries. Energy Storage Mater 2019;20:253–62. link1

[145] Ahmadraji T, Gonzalez-Macia L, Ritvonen T, Willert A, Ylimaula S, Donaghy D, et al. Biomedical diagnostics enabled by integrated organic and printed electronics. Anal Chem 2017;89(14):7447–54. link1

[146] Kim B, Winslow R, Lin I, Gururangan K, Evans J, Wright P. Layer-by-layer fully printed Zn–MnO2 batteries with improved internal resistance and cycle life. J Phys Conf Ser 2015;660:012009. link1

[147] Ho CC, Evans JW, Wright PK. Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. J Micromech Microeng 2010;20(10):104009. link1

[148] Ghiurcan GA, Liu CC, Webber A, Feddrix FH. Development and characterization of a thick-film printed zinc–alkaline battery. J Electrochem Soc 2003;150(7):A922–7. link1

[149] Ho CC, Murata K, Steingart DA, Evans JW, Wright PK. A super ink jet printed zinc–silver 3D microbattery. J Micromech Microeng 2009;19(9):094013. link1

[150] Gaikwad AM, Whiting GL, Steingart DA, Arias AC. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 2011;23 (29):3251–5. link1

[151] Gaikwad AM, Chu HN, Qeraj R, Zamarayeva AM, Steingart DA. Reinforced electrode architecture for a flexible battery with paperlike characteristics. Energy Technol 2013;1(2–3):177–85. link1

[152] Kim H, Sutto TE, Proell J, Kohler R, Pfleging W, Piqué A. Laser-printed/ structured thick-film electrodes for Li-ion microbatteries. In: Proceedings of the Laser-Based Micro- and Nanoprocessing VIII Conference; 2014 Feb 1–6; San Francisco, CA, USA; 2014.

[153] Lee ST, Jeon SW, Yoo BJ, Choi SD, Kim HJ, Lee SM. Electrochemical properties of LiCoO2 thick-film cathodes prepared by screen-printing technique. J Power Sources 2006;155(2):375–80. link1

[154] Delannoy PE, Riou B, Brousse T, Le Bideau J, Guyomard D, Lestriez B. Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries. J Power Sources 2015;287:261–8. link1

[155] Milroy C, Manthiram A. Printed microelectrodes for scalable, high-arealcapacity lithium–sulfur batteries. Chem Commun 2016;52(23):4282–5. link1

[156] Jung CY, Zhao TS, An L, Zeng L, Wei ZH. Screen printed cathode for nonaqueous lithium–oxygen batteries. J Power Sources 2015;297:174–80. link1

[157] El Baradai O, Beneventi D, Alloin F, Bongiovanni R, Bruas-Reverdy N, Bultel Y, et al. Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrodes in lithium ion batteries. J Mater Sci Technol 2016;32 (6):566–72. link1

[158] Gu Y, Wu A, Sohn H, Nicoletti C, Iqbal Z, Federici JF. Fabrication of rechargeable lithium ion batteries using water-based inkjet printed cathodes. J Manuf Process 2015;20(Pt 1):198–205. link1

[159] Sousa RE, Oliveira J, Gören A, Miranda D, Silva MM, Hilliou L, et al. High performance screen printable lithium-ion battery cathode ink based on CLiFePO4. Electrochim Acta 2016;196:92–100. link1

[160] Prosini PP, Mancini R, Petrucci L, Contini V, Villano P. Li4Ti5O12 as anode in allsolid-state, plastic, lithium-ion batteries for low-power applications. Solid State Ion 2001;144(1–2):185–92. link1

[161] Zhao Y, Zhou Q, Liu L, Xu J, Yan M, Jiang Z. A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries. Electrochim Acta 2006;51(13):2639–45. link1

[162] Park MS, Hyun SH, Nam SC. Characterization of a LiCoO2 thick film by screenprinting for a lithium ion micro-battery. J Power Sources 2006;159(2):1416–21. link1

[163] Huang J, Yang J, Li W, Cai W, Jiang Z. Electrochemical properties of LiCoO2 thin film electrode prepared by ink-jet printing technique. Thin Solid Films 2008;516(10):3314–9. link1

[164] Wei D, Andrew P, Yang H, Jiang Y, Li F, Shan C, et al. Flexible solid state lithium batteries based on graphene inks. J Mater Chem 2011;21(26):9762–7. link1

[165] Izumi A, Sanada M, Furuichi K, Teraki K, Matsuda T, Hiramatsu K, et al. Development of high capacity lithium-ion battery applying threedimensionally patterned electrode. Electrochim Acta 2012;79:218–22. link1

[166] Izumi A, Sanada M, Furuichi K, Teraki K, Matsuda T, Hiramatsu K, et al. Rapid charge and discharge property of high capacity lithium ion battery applying three-dimensionally patterned electrode. J Power Sources 2014;256:244–9. link1

[167] Gaikwad AM, Khau BV, Davies G, Hertzberg B, Steingart DA, Arias AC. A high areal capacity flexible lithium-ion battery with a strain-compliant design. Adv Energy Mater 2015;5(3):1401389. link1

[168] Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano 2010;4(10):5843–8. link1

[169] Hu J, Jiang Y, Cui S, Duan Y, Liu T, Guo H, et al. 3D-printed cathodes of LiMn1xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Adv Energy Mater 2016;6(18):1600856. link1

[170] Ostfeld AE, Gaikwad AM, Khan Y, Arias AC. High-performance flexible energy storage and harvesting system for wearable electronics. Sci Rep 2016;6 (1):26122. link1

[171] Zhao Z, Wu H. Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods. Nano Res 2019;12(10):2477–84. link1

[172] Tam WG, Wainright JS. A microfabricated nickel–hydrogen battery using thick film printing techniques. J Power Sources 2007;165(1):481–8. link1

[173] Golodnitsky D, Nathan M, Yufit V, Strauss E, Freedman K, Burstein L, et al. Progress in three-dimensional (3D) Li-ion microbatteries. Solid State Ion 2006;177(26–32):2811–9. link1

[174] Chamran F, Yeh Y, Min HS, Dunn B, Kim CJ. Fabrication of high-aspect-ratio electrode arrays for three-dimensional microbatteries. J Microelectromech Syst 2007;16(4):844–52. link1

[175] Bock W. Patterning and printing performance assessment. Report. Zofingen: Norbert Schlȁfli Maschinen; 2011 Mar 7. Report No.: D1.7. Contract No.: 224582.

[176] Habas SE, Platt HAS, van Hest MFAM, Ginley DS. Low-cost inorganic solar cells: from ink to printed device. Chem Rev 2010;110(11):6571–94. link1

[177] Roth B, Søndergaard RR, Krebs FC. Roll-to-roll printing and coating techniques for manufacturing large-area flexible organic. In: Logothetidis S, editor. Handbook of flexible organic electronics: materials, manufacturing and applications. Oxford: Woodhead Publishing; 2014. p. 171–92. link1

[178] Yadav GG, Gallaway JW, Turney DE, Nyce M, Huang J, Wei X, et al. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat Commun 2017;8(1):14424. link1

[179] Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17(6):543–9. link1

[180] Ulvestad A. A brief review of current lithium ion battery technology and potential solid state battery technologies. 2018. arXiv:1803.04317.

Related Research