Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 17, Issue 10 doi: 10.1016/j.eng.2022.04.013

Recent Advances in Space-Deployable Structures in China

a Xi’an Institute of Space Radio Technology, Xi’an 710100, China
b School of Electromechanical Engineering, Xidian University, Xi’an 710071, China
c Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
d Aerospace System Engineering Shanghai, Shanghai 201109, China
e State Key Laboratory of Robotics, Harbin Institute of Technology, Harbin 150001, China
f Department of Astronautical Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China

Received: 2021-11-25 Revised: 2022-03-18 Accepted: 2022-04-21 Available online: 2022-05-26

Next Previous

Abstract

Deployable space structure technology is an approach used in building spacecraft, especially when realizing deployment and folding functions. Once in orbit, the structures are released from the fairing, deployed, and positioned. With the development of communication, remote-sensing, and navigation satellites, space-deployable structures have become cutting-edge research topics in space science and technology. This paper summarizes the current research status and development trend of spacedeployable structures in China, including large space mesh antennas, space solar arrays, and deployable structures and mechanisms for deep-space exploration. Critical technologies of space-deployable structures are addressed from the perspectives of deployable mechanisms, cable-membrane form-finding, dynamic analysis, reliable environmental adaptability analysis, and validation. Finally, future technology developments and trends are elucidated in the fields of mesh antennas, solar arrays, deployable mechanisms, and on-orbit adjustment, assembly, and construction.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

References

[ 1 ] Duan B. The state-of-the-art and development trend of large space-borne deployable antenna. Electro Mech Eng 2017;33(1):1–14. Chinese. link1

[ 2 ] Deng ZQ. Design of space deployable and foldable mechanisms. Harbin: Harbin Institute of Technology Press; 2013. Chinese. link1

[ 3 ] Hu H, Tian Q, Zhang W, Jin D, Hu G, Song Y. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Adv Mech 2013;43(4):390–414. Chinese. link1

[ 4 ] Ma X, Li Y, Xiao Y, Zheng S, Huang Z, Feng T. Development and tendency of large space deployable antenna reflector. Space Electron Technol 2018;2:16–26. Chinese. link1

[ 5 ] Ma XF. Structure and mechanism of space mesh antenna. Beijing: China Machine Press; 2021. Chinese. link1

[ 6 ] Li P, Liu C, Tian Q, Hu H, Song Y. Dynamics of a deployable mesh reflector of satellite antenna: form-finding and modal analysis. J Comput Nonlinear Dynam 2016;11(4):041017. link1

[ 7 ] Xu Y, Guan FL. Structure–electronic synthesis design of deployable truss antenna. Aerosp Sci Technol 2013;26(1):259–67. link1

[ 8 ] Tang Y, Li T, Ma X. Pillow distortion analysis for a space mesh reflector antenna. AIAA J 2017;55(9):3206–13. link1

[ 9 ] Guo H, Shi C, Li M, Deng Z, Liu R. Design and dynamic equivalent modeling of double-layer hoop deployable antenna. Int J Aerosp Eng 2018;2018:1–15. link1

[10] Nie R, He B, Yan S, Ma X. Design optimization of mesh antennas for on-orbit thermal effects. Int J Mech Sci 2020;175:105547. link1

[11] Peng Y, Zhao Z, Zhou M, He J, Yang J, Xiao Y. Flexible multibody model and the dynamics of the deployment of mesh antennas. J Guid Control Dyn 2017;40(6): 1499–510. link1

[12] Du B, Wu Y, Zhang Y, Liu G. Overview of large reflector antenna technology. Radio Commun Technol 2016;42(1):1–8. Chinese. link1

[13] Li WJ, Cheng DY, Liu XG, Wang YB, Shi WH, Tang ZX, et al. On-orbit service (OOS) of spacecraft: a review of engineering developments. Prog Aerosp Sci 2019;108:32–120. link1

[14] Liu J, Fan Q, Deng T, Wang Y, Huang Q. Mechanical analysis and design of a light weight and high stiffness space manipulator. In: Proceedings of 2016 IEEE International Conference on Mechatronics and Automation; 2016 Aug 7–10; Harbin, China. IEEE; 2016. p. 1495–500.

[15] Ma X, Gao B, Li H, Liu F, Li T. Design and implementation of large space radio telescope antenna. Int J Comput Mater Sci Eng 2018;7(1–2):1850008. link1

[16] Wang M, Luo J, Fang J, Yuan J. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm. Adv Space Res 2018;61(6):1525–36. link1

[17] Meng D, She Y, Xu W, Lu W, Liang B. Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody Syst Dyn 2018;43(4):321–47. link1

[18] Ma S, Liang B, Wang T. Dynamic analysis of a hyper-redundant space manipulator with a complex rope network. Aerosp Sci Technol 2020;100:105768. link1

[19] Ni Z, Liu J, Wu Z, Shen X. Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method. Chin J Aeronauti 2019;32(2):513–30. link1

[20] Li Y, Wang C, Huang W. Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech Syst Signal Process 2019;117:188–209. link1

[21] Xu J, Fang H, Zhou T, Chen YH, Guo H, Zeng F. Optimal robust position control with input shaping for flexible solar array drive system: a fuzzy-set theoretic approach. IEEE Trans Fuzzy Syst 2019;27(9):1807–17. link1

[22] Lan X, Liu LW, Zhang FH, Liu ZX, Wang LL, Li QF, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites. Sci China Technol Sci 2020;63(8):1436–51. link1

[23] Cao Y, Cao D, Wei J, Huang W. Modeling for solar array drive assembly system and compensating for the rotating speed fluctuation. Aerosp Sci Technol 2019;84:131–42. link1

[24] Zhu S, Li D, Lei Y. Disturbance mechanism of the solar array drive system on spacecraft. Mech Syst Signal Process 2022;165:108306. link1

[25] Song K, Ma B, Yang G, Jiang J, Wei R, Zhang H, et al. A rotation-lightweight wireless power transfer system for solar wing driving. IEEE Trans Power Electron 2019;34(9):8816–30. link1

[26] Wu M, Shi Z, Xiao T, Chen ZLJ, Ang H. Effect of solar cell efficiency and flight condition on optimal flight control and energy performance for Z-shaped wing stratospheric solar aircraft. Acta Astronaut 2019;164:366–75. link1

[27] Gong S, Macdonald M. Review on solar sail technology. Astrodynamics 2019;3(2): 93–125. link1

[28] Zeng X, Gong S, Li J, Alfriend KT. Solar sail body-fixed hovering over elongated asteroids. J Guid Control Dyn 2016;39(6):1223–31. link1

[29] Zhang J, Qi R, Jiang B. Modeling and analysis of flexible solar sail. In: Proceedings of 2018 IEEE CSAA Guidance, Navigation and Control Conference; 2018 Aug 10–12; Xiamen, China. IEEE; 2018. p. 1–6.

[30] Song Y, Gong S. Solar sail trajectory optimization of multi-asteroid rendezvous mission. Acta Astronaut 2019;157:111–22. link1

[31] Zhang J, Wu N, Tong A, Liu Y. Structural dynamic responses of a stripped solar sail subjected to solar radiation pressure. Chin J Aeronauti 2020;33(8): 2204–11. link1

[32] Zhang P, Li Y, Hu H. Modeling and simulation active vibration control of flexible solar wing support structure. In: Proceedings of 2019 5th International Conference on Energy Equipment Science and Engineering; 2019 Nov 29–Dec 1; Harbin, China. IOP Publishing; 2020. p. 012024.

[33] Zheng J, Gao H, Yuan B, Liu Z, Yu H, Ding L, et al. Design and terramechanics analysis of a Mars rover utilising active suspension. Mechanism Mach Theory 2018;128:125–49. link1

[34] Zhou B, Shen SX, Lu W, Li YX, Liu Q, Tang CJ, et al. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth Planet Phys 2020;4(4):345–54. link1

[35] Du AM, Zhang Y, Li HY, Qiao DH, Yi Z, Zhang TL, et al. The Chinese mars rover fluxgate magnetometers. Space Sci Rev 2020;216(8):1–15. link1

[36] Li R, Di K, Howard AB, Matthies L, Wang J, Agarwal S. Rock modeling and matching for autonomous long-range Mars rover localization. J Field Robot 2007;24(3):187–203. link1

[37] Zhao W, Wang C. China’s lunar and deep space exploration: touching the moon and exploring the universe. Natl Sci Rev 2019;6(6):1274–8. link1

[38] Liang Z, Chen J, Wang Y. Equivalent acceleration imitation for single wheel of manned lunar rover by varying torque on earth. IEEE/ASME Trans Mechatron 2020;25(1):282–93. link1

[39] Jia Y, Zou Y, Xue C, Ping J, Yan J, Ning Y. Scientific objectives and payloads of Chang’e-4 mission. Chin J Space Sci 2018;38(1):118–30. Chinese. link1

[40] Zhang D, Liu L, Leng J, Liu Y. Ultra-light release device integrated with screenprinted heaters for CubeSat’s deployable solar arrays. Compos Struct 2020;232:111561. link1

[41] Zhang D, Liu L, Lan X, Leng J, Liu Y. Synchronous deployed design concept triggered by carbon fiber reinforced shape memory polymer composites. Compos Struct 2022;290:115513. link1

[42] Shi C, Guo H, Zhang S, Liu R, Deng Z. Configuration synthesis of linear foldable over-constrained deployable unit based on screw theory. Mechanism Mach Theory 2021;156:104163. link1

[43] Ding X, Yang Y, Dai JS. Design and kinematic analysis of a novel prism deployable mechanism. Mechanism Mach Theory 2013;63:35–49. link1

[44] Chen Y, Feng J, Liu Y. A group-theoretic approach to the mobility and kinematic of symmetric over-constrained structures. Mechanism Mach Theory 2016;105:91–107. link1

[45] Chen Y, You Z. Square deployable frames for space applications. Part 1: theory. Proc Inst Mech Eng 2006;220(4):347–54. link1

[46] Sareh P, Chermprayong P, Emmanuelli M, Nadeem H, Kovac M. A rotary origami protective system for robotic rotorcraft. Sci Robot 2018;3(22): eaah5228. link1

[47] Yang Y, Liu Li, Li J, Yang Y, Zhang T, Mao Y, et al. Featured services and performance of BDS-3. Sci Bull 2021;66(20):2135–43. link1

[48] Ye PJ, Sun ZZ, Zhang H, Li F. An overview of the mission and technical characteristics of Change’4 Lunar Probe. Sci China Technol Sci 2017;60(5): 658–67. link1

[49] Li X, Meng Q, Gu X, Jancso T, Yu T, Wang K, et al. A hybrid method combining pixel-based and object-oriented methods and its application in Hungary using Chinese HJ-1 satellite images. Int J Remote Sens 2013;34(13):4655–68. link1

[50] Liu Z, Wu Y, Ma J. Design and verification of high-stiffness solar wing on agile satellites. J Astronaut 2019;40(6):621–7. Chinese. link1

[51] Wu Z, Liu Z, Rong J, Wu Y, Xin P, Luo Q. Modal simulation and experimental research on circular solar arrays. J Astronaut 2020;41(12):1516–24. Chinese. link1

[52] Xin P, Liu Z, Rong J, Liu C, Wu Z, Liu B. Modeling and analysis of deployment dynamics for UltraFlex solar array. J Astronaut 2020;41(3):262–9. Chinese. link1

[53] Li F, Liu L, Lan X, Pan C, Liu Y, Leng J, et al. Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite. Smart Mater Struct 2019;28(7):075023. link1

[54] Pan Y, Wang C. Developing the planetary science research for the sustainable deep space exploration of China. Bull Natl Nat Sci Found China 2021;35(2): 181–5. Chinese. link1

[55] Wu W, Yu D, Huang J, Zong Q, Wang C, Yu G, et al. Exploring the solar system boundary. Sci Sin Inf 2019;49(1):1. link1

[56] Shen Z, Zhang W, Jia Y, Sun Z. System design and technical characteristics analysis of Chang’e-3 lunar rover. Spacecr Eng 2015;24(5):8–13. Chinese. link1

[57] Dang Z, Li H, Peng S, Wen B, Shen Z, Jia Y. System design and verification of Chang’e-4 rover. Spacecr Eng 2019;28(4):37–42. Chinese. link1

[58] Chen M, Ma JN. China’s five-star red flag flies proudly on red planet [Internet]. Beijing: China Daily; 2021 Jul 20 [cited 2021 Nov 21]. Available from: http:// english.www.gov.cn/news/topnews/202107/20/content_WS60f622b4c6d0df5 7f98dd427.html. link1

[59] China National Space Administration. The first scientific images of Tianwen-1 probe landing on Mars unveiled [Internet]. Beijing: CNSA; 2021 Jun 11 [cited 2021 Nov 21]. Available from: http://www.cnsa.gov.cn/n6758823/n6758838/ c6812123/content.html. Chinese. link1

[60] Li C, Angeles J, Guo H, Yan H, Tang D, Liu R, et al. Mobility and singularity analyses of a symmetric multi-loop mechanism for space applications. Proc Inst Mech Eng 2021;235(22):6205–18. link1

[61] Yang Y, Ding X. Kinematic analysis of a plane deployable mechanism assembled by four pyramid cells. J Aeronaut Astronaut 2010;31(6):1257–65. Chinese. link1

[62] Wei G, Chen Y, Dai JS. Synthesis, mobility, and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion. J Mech Des 2014;136(9):091003. link1

[63] Chen Y, Feng J, Sun Q. Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry. Int J Solids Struct 2018;139–140:1–14. link1

[64] Agrawal P, Anderson M, Card M. Preliminary design of large reflectors with flat facets. IEEE Trans Antennas Propag 1981;29(4):688–94. link1

[65] Ma X, Li T. Surface reconstruction of deformable reflectors by combining Zernike polynomials with radio holography. AIAA J 2019;57(6): 2544–52. link1

[66] Wang Z, Li T, Ma X. Method for generating statically determinate cable net topology configurations of deployable mesh antennas. J Struct Eng 2015;141(7): 04014182. link1

[67] Tang Y, Li T. Equivalent-force density method as a shape-finding tool for cablemembrane structures. Eng Struct 2017;151:11–9. link1

[68] Ma XF, Li TJ. Dynamic analysis of uncertain structures using an interval-wave approach. Int J Appl Mech 2018;10(2):1850021. link1

[69] Ma XF, Li TJ, Wang ZW. Hybrid active wave/mode control of space prestressed taut cable net structures. Int J Appl Mech 2018;10(6):1850062. link1

[70] Tian Q, Liu C, Li P, Hu H. Advances and challenges in dynamics of flexible multibody systems. J Dyn Control 2017;15(5):385–405. Chinese. link1

[71] Zhou ZC, Dong FX. Multi-body dynamics analysis of large antennas in space. Beijing: China Astronautic Publishing House; 2014. Chinese. link1

[72] Ma XF, Yang JG, Hu JF, Zhang X, Xiao Y, Zhao ZH. Deployment dynamical numerical simulation on large elliptical truss antenna. Sci Sin Phys Mech Astron 2019;49(2):024516. link1

[73] Feng Y, Ma X, Li Y. Review of thermally-induced dynamic responses of large space structures. Space Electron Technol 2020;17(6):13–21. Chinese. link1

[74] Chen GH, Wang B, Hua Y, Zhang X, Zhao J, Zheng SK. The key technologies for radial rib deployable antenna of Chang’e-4 relay satellite. Sci Sin Technol 2019;49(2):166–74. Chinese. link1

[75] Lin F, Chen C, Zhou J, Dai Y. Hanger forces optimization of ground test device on deployable struct. Int J Space Struct 2021;36(2):127–36. link1

[76] Liu ZQ, Qiu H, Li X, Yang SL. Review of large spacecraft deployable membrane antenna structures. Chin J Mech Eng 2017;30(6):1447–59. link1

[77] Zhao Z, Fu K, Li M, Li J, Xiao Y. Gravity compensation system of mesh antennas for in-orbit prediction of deployment dynamics. Acta Astronaut 2020;167:1–13. link1

[78] Mihora DJ, Redmond PJ. Electrostatically formed antennas. J Spacecr Rockets 1980;17(5):465–73. link1

[79] Duan B, Zhang Y, Du J. Electrostatic forming membrane reflector antenna. In: Large deployable satellite antennas. Singapore: Springer; 2020. p. 241–71. link1

Related Research