Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 19, Issue 12 doi: 10.1016/j.eng.2022.04.027

Recent Developments in Hydrodynamic Cavitation Reactors: Cavitation Mechanism, Reactor Design, and Applications

Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 3K7, Canada

Received: 2021-03-18 Revised: 2022-02-13 Accepted: 2022-04-29 Available online: 2022-10-20

Next Previous

Abstract

Hydrodynamic cavitation is considered to be a promising technology for process intensification, due to its high energy efficiency, cost-effective operation, ability to induce chemical reactions, and scale-up possibilities. In the past decade, advancements have been made in the fundamental understanding of hydrodynamic cavitation and its main variables, which provide a basis for applications of hydrodynamic cavitation in radical-induced chemical reaction processes. Here, we provide an extensive review of these research efforts, including the fundamentals of hydrodynamic cavitation, the design of cavitation reactors, cavitation-induced reaction enhancement, and relevant industrial applications. Two types of hydrodynamic cavitation reactors—namely, stationary and rotational—are compared. The design parameters of a hydrodynamic cavitation reactor and reactor performance at the laboratory and pilot scales are discussed, and recommendations are made regarding optimal operation and geometric conditions. The commercial cavitation reactors that are currently on the market are reviewed here for the first time. The unique features of hydrodynamic cavitation have been widely applied to various chemical reactions, such as oxidization reactions and wastewater treatment, and to physical processes, such as emulsion generation and component extraction. The roles of radicals and gas bubble implosion are also thoroughly discussed.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Suslick KS. Sonochemistry. Science 1990;247(4949):1439–45. link1

[ 2 ] Tao Y, Cai J, Huai X, Liu B, Guo Z. Application of hydrodynamic cavitation to wastewater treatment. Chem Eng Technol 2016;39(8):1363–76. link1

[ 3 ] Asaithambi N, Singha P, Dwivedi M, Singh SK. Hydrodynamic cavitation and its application in food and beverage industry: a review. J Food Process Eng 2019;42(5):e13144. link1

[ 4 ] Brujan E. Cavitation in non-Newtonian fluids: with biomedical and bioengineering applications. Berlin: Springer Science + Business Media; 2011. link1

[ 5 ] Gogate PR, Pandit AB. Hydrodynamic cavitation reactors: a state of the art review. Rev Chem Eng 2001;17(1):1–85. link1

[ 6 ] Lauterborn W. Cavitation and coherent optics. In: Lauterborn W, editor. Cavitation and inhomogeneities in underwater acoustics. Berlin: Springer; 1980. p. 3–12. link1

[ 7 ] Lauterborn W, Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 1975;72(2): 391–9. link1

[ 8 ] Shah YT, Pandit AB, Moholkar VS. Cavitation reaction engineering. New York City: Kluwer Academic/Plenum Publishers; 1999. link1

[ 9 ] Moholkar VS, Senthil Kumar P, Pandit AB. Hydrodynamic cavitation for sonochemical effects. Ultrason Sonochem 1999;6(1–2):53–65. link1

[10] Gogate PR. Greener processing routes for reactions and separations based on use of ultrasound and hydrodynamic cavitation. In: Stefanidis G, Stankiewicz A, editors. Alternative energy sources for green chemistry. London: Royal Society of Chemistry; 2016. p. 126–60. link1

[11] Holkar CR, Jadhav AJ, Pinjari DV, Pandit AB. Cavitationally driven transformations: a technique of process intensification. Ind Eng Chem Res 2019;58(15):5797–819. link1

[12] Šarc A, Stepišnik-Perdih T, Petkovšek M, Dular M. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrason Sonochem 2017;34:51–9. link1

[13] Föttinger H. Untersuchungen über Kavitation und Korrosion bei Turbinen, Turbopumpen und Propellern. In: Wissenschaftlicher Beirat des Vereines Deutscher Ingenieure, editor. Hydraulische Probleme. Berlin: VDI-Verlag; 1926. p. 14–64. German.

[14] Plesset MS. The dynamics of cavitation bubbles. J Appl Mech 1949;16(3): 277–82. link1

[15] Petkovšek M, Zupanc M, Dular M, Kosjek T, Heath E, Kompare B, et al. Rotation generator of hydrodynamic cavitation for water treatment. Separ Purif Tech 2013;118:415–23. link1

[16] Bagal MV, Gogate PR. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review. Ultrason Sonochem 2014;21(1):1–14. link1

[17] Yan Y, Thorpe RB. Flow regime transitions due to cavitation in the flow through an orifice. Int J Multiph Flow 1990;16(6):1023–45. link1

[18] Cioncolini A, Scenini F, Duff J, Szolcek M, Curioni M. Choked cavitation in micro-orifices: an experimental study. Exp Therm Fluid Sci 2016;74:49–57. link1

[19] Cheng X, Shao X, Zhang L. The characteristics of unsteady cavitation around a sphere. Phys Fluids 2019;31(4):042103. link1

[20] Long X, Zhang J, Wang J, Xu M, Lyu Q, Ji B. Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation. Int J Multiph Flow 2017;89:290–8. link1

[21] Ghorbani M, Sadaghiani AK, Villanueva LG, Kosar A. Hydrodynamic cavitation in microfluidic devices with roughened surfaces. J Micromech Microeng 2018;28(7):075016. link1

[22] Balasundaram B, Harrison STL. Disruption of Brewers’ yeast by hydrodynamic cavitation: process variables and their influence on selective release. Biotechnol Bioeng 2006;94(2):303–11. link1

[23] Saharan VK, Badve MP, Pandit AB. Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chem Eng J 2011;178:100–7. link1

[24] Soyama H. Luminescence intensity of vortex cavitation in a venturi tube changing with cavitation number. Ultrason Sonochem 2021;71:105389. link1

[25] Carpenter J, George S, Saharan VK. Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: effect of geometry and cavitation number. Chem Eng Process 2017;116:97–104. link1

[26] Pelz PF, Keil T, Groß TF. The transition from sheet to cloud cavitation. J Fluid Mech 2017;817:439–54. link1

[27] Ramamurthi K, Patnaik S. Influence of periodic disturbances on inception of cavitation in sharp-edged orifices. Exp Fluids 2002;33(5):720–7. link1

[28] Dular M, Bachert B, Stoffel B, Širok B. Relationship between cavitation structures and cavitation damage. Wear 2004;257(11):1176–84. link1

[29] Hatano S, Kang D, Kagawa S, Nohmi M, Yokota K. Study of cavitation instabilities in double-suction centrifugal pump. Int J Fluid Mach Syst 2014; 7(3):94–100. link1

[30] Keller AP. Cavitation scale effects—empirically found relations and the correlation of cavitation number and hydrodynamic coefficients. In: CAV 2001: Fourth International Symposium on Cavitation; 2001 Jun 20–23; Pasadena, CA, USA; 2001. link1

[31] Ando K, Liu AQ, Ohl CD. Homogeneous nucleation in water in microfluidic channels. Phys Rev Lett 2012;109(4):044501. link1

[32] Mørch KA. Cavitation inception from bubble nuclei. Interface Focus 2015; 5(5):20150006. link1

[33] Groß TF, Pelz PF. Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation. J Fluid Mech 2017;830:138–64. link1

[34] Khoo MT, Venning JA, Pearce BW, Takahashi K, Mori T, Brandner PA. Natural nuclei population dynamics in cavitation tunnels. Exp Fluids 2020;61(2):34. link1

[35] Fox FE, Herzfeld KF. Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 1954;26:984–9. link1

[36] Hsiao CT, Chahine GL. Effect of a propeller and gas diffusion on bubble nuclei distribution in a liquid. J Hydrodyn 2012;24:809–22. link1

[37] Tandiono T, Kang CW, Lu X, Turangan CK, Tan M, Osman HB, et al. An experimental study of gas nuclei-assisted hydrodynamic cavitation for aquaculture water treatment. J Vis 2020;23(5):863–72. link1

[38] Russell PS, Barbaca L, Venning JA, Pearce BW, Brandner PA. Measurement of nuclei seeding in hydrodynamic test facilities. Exp Fluids 2020;61(3):79. link1

[39] Pascal RW, Yelland MJ, Srokosz MA, Moat BI, Waugh EM, Comben DH, et al. A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean. J Atmos Ocean Technol 2011;28(4):590–605. link1

[40] Yao X, Li Z, Sun L, Lu H. A study on bubble nuclei population dynamics under reduced pressure. Phys Fluids 2020;32(11):112019. link1

[41] Hemmingsen EA. Cavitation in gas-supersaturated solutions. J Appl Phys 1975;46(1):213–8. link1

[42] Venning JA, Khoo MT, Pearce BW, Brandner PA. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities. Exp Fluids 2018;59(4):71. link1

[43] Johnson BD, Cooke RC. Generation of stabilized microbubbles in seawater. Science 1981;213(4504):209–11. link1

[44] Calgaroto S, Wilberg KQ, Rubio J. On the nanobubbles interfacial properties and future applications in flotation. Miner Eng 2014;60:33–40. link1

[45] Etchepare R, Oliveira H, Nicknig M, Azevedo A, Rubio J. Nanobubbles: generation using a multiphase pump, properties and features in flotation. Miner Eng 2017;112:19–26. link1

[46] Ohgaki K, Khanh NQ, Joden Y, Tsuji A, Nakagawa T. Physicochemical approach to nanobubble solutions. Chem Eng Sci 2010;65(3):1296–300. link1

[47] Jin F, Li J, Ye X, Wu C. Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of a-cyclodextrin. J Phys Chem B 2007; 111(40):11745–9. link1

[48] Azevedo A, Etchepare R, Calgaroto S, Rubio J. Aqueous dispersions of nanobubbles: generation, properties and features. Miner Eng 2016;94:29–37. link1

[49] Pourkarimi Z, Rezai B, Noaparast N. Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications. Physicochem Probl Miner Process 2017;53(2):920–42. link1

[50] Phan KKT, Truong T, Wang Y, Bhandari B. Nanobubbles: fundamental characteristics and applications in food processing. Trends Food Sci Technol 2020;95:118–30. link1

[51] Michailidi ED, Bomis G, Varoutoglou A, Efthimiadou EK, Mitropoulos AC, Favvas EP. Fundamentals and applications of nanobubbles. In: Kyzas GZ, Mitropoulos AC, editors. Interface science and technology. Volume 30. Advanced low-cost separation techniques in interface science. London: Academic Press; 2019. p. 69–99. link1

[52] Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021;50(9):5746–76. link1

[53] Zhou M, Cavalieri F, Caruso F, Ashokkumar M. Confinement of acoustic cavitation for the synthesis of protein-shelled nanobubbles for diagnostics and nucleic acid delivery. ACS Macro Lett 2012;1(7):853–6. link1

[54] Favvas EP, Kyzas GZ, Efthimiadou EK, Mitropoulos AC. Bulk nanobubbles, generation methods and potential applications. Curr Opin Colloid Interface Sci 2021;54:101455. link1

[55] Weijs JH, Seddon JRT, Lohse D. Diffusive shielding stabilizes bulk nanobubble clusters. ChemPhysChem 2012;13(8):2197–204. link1

[56] Yasui K, Tuziuti T, Kanematsu W, Kato K. Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 2016;32(43):11101–10. link1

[57] Alheshibri M, Qian J, Jehannin M, Craig VSJ. A history of nanobubbles. Langmuir 2016;32(43):11086–100. link1

[58] Kim J, Song SJ. Measurement of temperature effects on cavitation in a turbopump inducer. J Fluids Eng 2016;138(1):011304. link1

[59] Niemczewski B. Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Ultrason Sonochem 2007;14(1):13–8. link1

[60] Torre L, Cervone A, Pasini A, d’Agostino L. Experimental characterization of thermal cavitation effects on space rocket axial inducers. J Fluids Eng 2011; 133(11):111303. link1

[61] Li B, Gu Y, Chen M. An experimental study on the cavitation of water with dissolved gases. Exp Fluids 2017;58(12):164. link1

[62] De Giorgi MG, Ficarella A, Tarantino M. Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization. Int J Heat Fluid Flow 2013;39:160–72. link1

[63] Joshi RK, Gogate PR. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies. Ultrason Sonochem 2012;19(3):532–9. link1

[64] Kumar PS, Pandit AB. Modeling hydrodynamic cavitation. Chem Eng Technol 1999;22(12):1017–27. link1

[65] Liu X, Wu Z, Li B, Zhao J, He J, Li W, et al. Influence of inlet pressure on cavitation characteristics in regulating valve. Eng Appl Comput Fluid Mech 2020;14(1):299–310. link1

[66] Liang J, Luo X, Liu Y, Li X, Shi T. A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves. Int J Heat Mass Transf 2016;103: 684–700. link1

[67] Tasdemir A, Cengiz _ I, Yildiz E, Bayhan YK. Investigation of ammonia stripping with a hydrodynamic cavitation reactor. Ultrason Sonochem 2020;60: 104741. link1

[68] Wu ZL, Ondruschka B, Bräutigam P. Degradation of chlorocarbons driven by hydrodynamic cavitation. Chem Eng Technol 2007;30:642–8. link1

[69] Flynn HG. Physics of acoustic cavitation in liquids. In: Mason WP, editor. Physical acoustics, Volume I—Part B. New York City: Academic Press Inc.; 1964. p. 57–172. link1

[70] Kim SJ, Lim KH, Kim CY. Deformation characteristics of spherical bubble collapse in Newtonian fluids near the wall using the finite element method with ALE formulation. Korea-Australia Rheol J 2006;18(2):109–18. link1

[71] Deng Q, Anilkumar AV, Wang TG. The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool. J Fluid Mech 2007;578:119–38. link1

[72] Luo J, Xu W, Zhai Y, Zhang Q. Experimental study on the mesoscale causes of the influence of viscosity on material erosion in a cavitation field. Ultrason Sonochem 2019;59:104699. link1

[73] Arndt REA. Cavitation in fluid machinery and hydraulic structures. Annu Rev Fluid Mech 1981;13:273–326. link1

[74] Nazari-Mahroo H, Pasandideh K, Navid HA, Sadighi-Bonabi R. How important is the liquid bulk viscosity effect on the dynamics of a single cavitation bubble? Ultrason Sonochem 2018;49:47–52. link1

[75] Li S, Brennen CE, Matsumoto Y. Introduction for amazing (cavitation) bubbles. Interface Focus 2015;5(5):20150059. link1

[76] Flint EB, Suslick KS. The temperature of cavitation. Science 1991;253(5026): 1397–9. link1

[77] Qin Z, Alehossein H. Heat transfer during cavitation bubble collapse. Appl Therm Eng 2016;105:1067–75. link1

[78] Zaporozhets EP, Kholpanov LP, Zibert GK, Artemov AV. Vortex and cavitation flows in hydraulic systems. Theor Found Chem Eng 2004;38(3):225–34. link1

[79] Little S. Null tests of breakthrough energy claims. In: Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2006 Jul 9–12; Sacramento, CA, USA. Reston: American Institute of Aeronautics and Astronautics, Inc.; 2006. link1

[80] Pyun KB, Kwon WC, Oh KT, Yoon JY. Investigation of the performance for a heat generator using hydrodynamic cavitation. In: Proceedings of the ASMEJSME-KSME 2011 Joint Fluids Engineering Conference; 2011 Jul 24–29; Hamamatsu, Japan. New York City: American Society of Mechanical Engineers; 2011. p. 701–6. link1

[81] Sun X, Park JJ, Kim HS, Lee SH, Seong SJ, Om AS, et al. Experimental investigation of the thermal and disinfection performances of a novel hydrodynamic cavitation reactor. Ultrason Sonochem 2018;49:13–23. link1

[82] Song Y, Gu C. Development and validation of a three-dimensional computational fluid dynamics analysis for journal bearings considering cavitation and conjugate heat transfer. J Eng Gas Turbines Power 2015;137 (12):122502. link1

[83] Schneider B, Kosar A, Peles Y. Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels. Int J Heat Mass Transf 2007; 50(13–14):2838–54. link1

[84] Ghorbani M, Chen H, Villanueva LG, Grishenkov D, Kosar A. Intensifying cavitating flows in microfluidic devices with poly(vinyl alcohol) (PVA) microbubbles. Phys Fluids 2018;30(10):102001. link1

[85] Ghorbani M, Deprem G, Ozdemir E, Motezakker AR, Villanueva LG, Kosar A. On ‘‘cavitation on chip” in microfluidic devices with surface and sidewall roughness elements. J Microelectromech Syst 2019;28(5):890–9. link1

[86] Sole JD, Shelofsky BJ, Scaringe RP, Cole GS. Cavitation-enhanced microchannel heat exchanger demonstration and heat transfer correlation development using R-134a. In: Proceedings of the ASME 2012 Heat Transfer Summer Conferenc; 2012 Jul 8–12; Rio Grande, PR, USA. New York City: American Society of Mechanical Engineers; 2012. p. 607–15. link1

[87] Lee J, Mudawar I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part II—heat transfer characteristics. Int J Heat Mass Transf 2005;48(5):941–55. link1

[88] Mann GW, Madamadakala GR, Eckels SJ. Heat transfer characteristics of R-134a in a converging–diverging nozzle. Int J Heat Fluid Flow 2016;62(Pt B): 464–73. link1

[89] Liu B, Cai J, Huai X, Li F. Cavitation bubble collapse near a heated wall and its effect on the heat transfer. J Heat Transfer 2014;136(2):022901. link1

[90] Liu B, Cai J, Tao Y, Huai X. Interaction of two cavitation bubbles in a tube and its effects on heat transfer. J Therm Sci 2017;26(1):66–72. link1

[91] Mason TJ, Lorimer JP. Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Weinheim: Wiley-VCH Verlag GmbH; 2002. link1

[92] Gogate PR, Kabadi AM. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 2009;44(1):60–72. link1

[93] Gogate PR, Sutkar VS, Pandit AB. Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 2011;166(3):1066–82. link1

[94] Plesset MS, Prosperetti A. Bubble dynamics and cavitation. Annu Rev Fluid Mech 1977;9:145–85. link1

[95] Peng K, Tian S, Li G, Huang Z, Yang R, Guo Z. Bubble dynamics characteristics and influencing factors on the cavitation collapse intensity for self-resonating cavitating jets. Pet Explor Dev 2018;45(2):343–50. link1

[96] Karamah EF, Bismo S, Purwanto WW. Significance of acoustic and hydrodynamic cavitations in enhancing ozone mass transfer. Ozone Sci Eng 2013;35(6):482–8. link1

[97] Zhang H, Duan L, Zhang D. Absorption kinetics of ozone in water with ultrasonic radiation. Ultrason Sonochem 2007;14(5):552–6. link1

[98] Kelkar MA, Gogate PR, Pandit AB. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrason Sonochem 2008;15(3):188–94. link1

[99] Milly PJ, Toledo RT, Chen J, Kazem B. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods. J Food Sci 2007; 72(9):M407–13. link1

[100] Chuah LF, Yusup S, Abd Aziz AR, Bokhari A, Abdullah MZ. Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. J Clean Prod 2016;112(Pt 5):4505–14. link1

[101] Braeutigam P, Franke M, Schneider RJ, Lehmann A, Stolle A, Ondruschka B. Degradation of carbamazepine in environmentally relevant concentrations in water by hydrodynamic–acoustic–cavitation (HAC). Water Res 2012;46(7): 2469–77. link1

[102] Franke M, Braeutigam P, Wu ZL, Ren Y, Ondruschka B. Enhancement of chloroform degradation by the combination of hydrodynamic and acoustic cavitation. Ultrason Sonochem 2011;18(4):888–94. link1

[103] Arrojo S, Benito Y, Martínez TA. A parametrical study of disinfection with hydrodynamic cavitation. Ultrason Sonochem 2008;15(5):903–8. link1

[104] Gogate PR. Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem Eng Process 2008;47(4): 515–27. link1

[105] Capocelli M, Prisciandaro M, Musmarra D, Lancia A. Understanding the physics of advanced oxidation in a venturi reactor. Chem Eng Trans 2013;32: 691–6. link1

[106] Moholkar VS, Pandit AB. Bubble behavior in hydrodynamic cavitation: effect of turbulence. AIChE J 1997;43(6):1641–8. link1

[107] Capocelli M, Prisciandaro M, Lancia A, Musmarra D. Modeling of cavitation as an advanced wastewater treatment. Desalination Water Treat 2013;51(7–9): 1609–14. link1

[108] Gogate PR, Pandit AB. Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE J 2000;46(8):1641–9. link1

[109] Gong C, Hart DP. Ultrasound induced cavitation and sonochemical yields. J Acoust Soc Am 1998;104(5):2675–82. link1

[110] Sochard S, Wilhelm AM, Delmas H. Modelling of free radicals production in a collapsing gas–vapour bubble. Ultrason Sonochem 1997;4(2):77–84. link1

[111] Gireesan S, Pandit AB. Modeling the effect of carbon-dioxide gas on cavitation. Ultrason Sonochem 2017;34:721–8. link1

[112] Fourest T, Deletombe E, Faucher V, Arrigoni M, Dupas J, Laurens JM. Comparison of Keller–Miksis model and finite element bubble dynamics simulations in a confined medium. Application to the hydrodynamic ram. Eur J Mech B 2018;68:66–75. link1

[113] Munter R. Advanced oxidation processes—current status and prospects. Proc Estonian Acad Sci Chem 2001;50(2):59–80. link1

[114] Badve M, Gogate P, Pandit A, Csoka L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Separ Purif Tech 2013;106:15–21. link1

[115] Joshi SM, Gogate PR. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L. Ultrason Sonochem 2019;52:375–81. link1

[116] Bandala ER, Rodriguez-Narvaez OM. On the nature of hydrodynamic cavitation process and its application for the removal of water pollutants. Air Soil Water Res 2019;12:1178622119880488. link1

[117] Arrojo S, Nerín C, Benito Y. Application of salicylic acid dosimetry to evaluate hydrodynamic cavitation as an advanced oxidation process. Ultrason Sonochem 2007;14(3):343–9. link1

[118] Amin LP, Gogate PR, Burgess AE, Bremner DH. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem Eng J 2010;156(1):165–9. link1

[119] Zupanc M, Petkovšek M, Zevnik J, Kozmus G, Šmid A, Dular M. Anomalies detected during hydrodynamic cavitation when using salicylic acid dosimetry to measure radical production. Chem Eng J 2020;396:125389. link1

[120] Wang B, Su H, Zhang B. Hydrodynamic cavitation as a promising route for wastewater treatment—a review. Chem Eng J 2021;412:128685. link1

[121] Rajoriya S, Bargole S, Saharan VK. Degradation of a cationic dye (rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway. Ultrason Sonochem 2017;34:183–94. link1

[122] Wang X, Wang J, Guo P, Guo W, Wang C. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J Hazard Mater 2009;169(1–3):486–91. link1

[123] Wang X, Jia J, Wang Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem Eng J 2017;315:274–82. link1

[124] Li P, Song Y, Yu S. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. Water Res 2014;62:241–8. link1

[125] Rajak U, Verma TN. Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine. Energy Convers Manage 2018;166:704–18. link1

[126] Farvardin M, Samani BH, Rostami S, Abbaszadeh-Mayvan A, Najafi G, Fayyazi E. Enhancement of biodiesel production from waste cooking oil: ultrasonic– hydrodynamic combined cavitation system. Energ Source Part A 2022;44(2): 5065–79. link1

[127] Samani BH, Behruzian M, Najafi G, Fayyazi E, Ghobadian B, Behruzian A, et al. The rotor–stator type hydrodynamic cavitation reactor approach for enhanced biodiesel fuel production. Fuel 2021;283:118821. link1

[128] Mohod AV, Gogate PR, Viel G, Firmino P, Giudici R. Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer. Chem Eng J 2017;316:751–7. link1

[129] Innocenzi V, Prisciandaro M. Technical feasibility of biodiesel production from virgin oil and waste cooking oil: comparison between traditional and innovative process based on hydrodynamic cavitation. Waste Manag 2021; 122:15–25. link1

[130] Chuah LF, Klemeš JJ, Yusup S, Bokhari A, Akbar MM, Chong ZK. Kinetic studies on waste cooking oil into biodiesel via hydrodynamic cavitation. J Clean Prod 2017;146:47–56. link1

[131] Grillo G, Boffa L, Binello A, Mantegna S, Cravotto G, Chemat F, et al. Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors. Food Res Int 2019;115:200–8. link1

[132] Albanese L, Bonetti A, D’Acqui LP, Meneguzzo F, Zabini F. Affordable production of antioxidant aqueous solutions by hydrodynamic cavitation processing of silver fir (Abies alba Mill.) needles. Foods 2019;8(2):65. link1

[133] Preece KE, Hooshyar N, Krijgsman AJ, Fryer PJ, Zuidam NJ. Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innov Food Sci Emerg Technol 2017;41:47–55. link1

[134] Lee I, Han JI. Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. Bioresour Technol 2015;186:246–51. link1

[135] Setyawan M, Budiman A, Mulyono P. Optimum extraction of algae-oil from microalgae using hydrodynamic cavitation. Int J Renew Energ Res 2018;8(1): 451–8. link1

[136] Tabatabaei M, Aghbashlo M, Dehhaghi M, Panahi HKS, Mollahosseini A, Hosseini M, et al. Reactor technologies for biodiesel production and processing: a review. Pror Energy Combust Sci 2019;74:239–303. link1

[137] Zhang Z, Wang G, Nie Y, Ji J. Hydrodynamic cavitation as an efficient method for the formation of sub-100 nm O/W emulsions with high stability. Chin J Chem Eng 2016;24(10):1477–80. link1

[138] Moholkar VS, Pandit AB. Modeling of hydrodynamic cavitation reactors: a unified approach. Chem Eng Sci 2001;56(21–22):6295–302. link1

[139] Ozonek J. Application of hydrodynamic cavitation in environmental engineering. London: CRC Press; 2012. link1

[140] Lunnbäck J. Hydrodynamic cavitation applied to anaerobic degradation of fats, oils and greases (FOGs) [dissertation]. Linköping: Linköping University; 2016. link1

[141] Carpenter J, Badve M, Rajoriya S, George S, Saharan VK, Pandit AB. Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev Chem Eng 2016;33(5):433–68. link1

[142] Arrojo S, Benito Y. A theoretical study of hydrodynamic cavitation. Ultrason Sonochem 2008;15(3):203–11. link1

[143] Sharma A, Gogate PR, Mahulkar A, Pandit AB. Modeling of hydrodynamic cavitation reactors based on orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem Eng J 2008;143(1–3): 201–9. link1

[144] Vichare NP, Gogate PR, Pandit AB. Optimization of hydrodynamic cavitation using a model reaction. Chem Eng Technol 2000;23(8):683–90. link1

[145] Ai W, Ding T. Orifice plate cavitation mechanism and its influencing factors. Water Sci Eng 2010;3(3):321–30. link1

[146] Simpson A, Ranade VV. Modelling of hydrodynamic cavitation with orifice: influence of different orifice designs. Chem Eng Res Des 2018;136: 698–711. link1

[147] Ghayal D, Pandit AB, Rathod VK. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason Sonochem 2013;20(1):322–8. link1

[148] Huang Y, Wu Y, Huang W, Yang F, Ren X. Degradation of chitosan by hydrodynamic cavitation. Polym Degrad Stabil 2013;98(1):37–43. link1

[149] Sivakumar M, Pandit AB. Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem 2002;9(3): 123–31. link1

[150] Rudolf P, Kubina D, Hudec M, Kozák J, Maršálek B, Maršálková E, et al. Experimental investigation of hydrodynamic cavitation through orifices of different geometries. EPJ Web Conf 2017;143:143. link1

[151] Senthil Kumar P, Siva Kumar M, Pandit AB. Experimental quantification of chemical effects of hydrodynamic cavitation. Chem Eng Sci 2000;55(9): 1633–9. link1

[152] Kalumuck KM, Chahine GL. The use of cavitating jets to oxidize organic compounds in water. J Fluids Eng 2000;122(3):465–70. link1

[153] Bagade VS, Suryawanshi PM, Nalavade SM. A review of multi-hole orifice plate. Int J Res Appl Sci Eng Technol 2019;7(4):3197–208. link1

[154] Saharan VK, Rizwani MA, Malani AA, Pandit AB. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrason Sonochem 2013;20(1):345–53. link1

[155] Panda D, Saharan VK, Manickam S. Controlled hydrodynamic cavitation: a review of recent advances and perspectives for greener processing. Processes 2020;8(2):220. link1

[156] Bashir TA, Soni AG, Mahulkar AV, Pandit AB. The CFD driven optimisation of a modified venturi for cavitational activity. Can J Chem Eng 2011;89(6): 1366–75. link1

[157] Ulas A. Passive flow control in liquid-propellant rocket engines with cavitating venturi. Flow Meas Instrum 2006;17(2):93–7. link1

[158] Ashrafizadeh SM, Ghassemi H. Experimental and numerical investigation on the performance of small-sized cavitating venturis. Flow Meas Instrum 2015;42:6–15. link1

[159] Brinkhorst S, von Lavante E, Wendt G. Numerical investigation of effects of geometry on cavitation in Herschel Venturi-tubes applied to liquid flow metering. In: Proceeding of the 9th International Symposium of Fluid Flow Measurement Publications; 2015 Apr 14–17; Arlington, VA, USA; 2015. link1

[160] Li M, Bussonnière A, Bronson M, Xu Z, Liu Q. Study of venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Miner Eng 2019;132:268–74. link1

[161] Bimestre TA, Júnior JAM, Botura CA, Canettieri E, Tuna CE. Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a venturi tube for sugarcane bagasse pretreatment. Bioresour Technol 2020;311:123540. link1

[162] Kuldeep, Saharan VK. Computational study of different venturi and orifice type hydrodynamic cavitating devices. J Hydrodyn Ser B 2016;28(2): 293–305. link1

[163] Franc JP, Michel JM. Fundamentals of cavitation. Dordrecht: Springe; 2005. link1

[164] Kim H, Koo B, Lee S, Yoon JY. Experimental study of cavitation intensity using a novel hydrodynamic cavitation reactor. J Mech Sci Technol 2019;33 (9):4303–10. link1

[165] Jyoti KK, Pandit AB. Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J 2001;7(3):201–12. link1

[166] Sun X, Kang CH, Park JJ, Kim HS, Om AS, Yoon JY. An experimental study on the thermal performance of a novel hydrodynamic cavitation reactor. Exp Therm Fluid Sci 2018;99:200–10. link1

[167] Šarc A, Oder M, Dular M. Can rapid pressure decrease induced by supercavitation efficiently eradicate Legionella pneumophila bacteria? Desalin Water Treat 2016;57(5):2184–94. link1

[168] Crudo D, Bosco V, Cavaglià G, Grillo G, Mantegna S, Cravotto G. Biodiesel production process intensification using a rotor–stator type generator of hydrodynamic cavitation. Ultrason Sonochem 2016;33:220–5. link1

[169] Maršálek B, Zezulka Š, Maršálková E, Pochyly´ F, Rudolf P. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria. Chem Eng J 2020;382:122383. link1

[170] Patil PN, Gogate PR, Csoka L, Dregelyi-Kiss A, Horvath M. Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason Sonochem 2016;30:79–86. link1

[171] Šarc A, Kosel J, Stopar D, Oder M, Dular M. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation. Ultrason Sonochem 2018;42:228–36. link1

[172] Loraine G, Chahine G, Hsiao CT, Choi JK, Aley P. Disinfection of Gram-negative and Gram-positive bacteria using DynaJets hydrodynamic cavitating jets. Ultrason Sonochem 2012;19(3):710–7. link1

[173] Sun X, Jia X, Liu J, Wang G, Zhao S, Ji L, et al. Investigation on the characteristics of an advanced rotational hydrodynamic cavitation reactor for water treatment. Sep Purif Technol 2020;251:117252. link1

[174] Cerecedo LM, Dopazo C, Gomez-Lus R. Water disinfection by hydrodynamic cavitation in a rotor–stator device. Ultrason Sonochem 2018;48:71–8. link1

[175] Kosel J, Šuštaršicˇ M, Petkovšek M, Zupanc M, Sezˇun M, Dular M. Application of (super)cavitation for the recycling of process waters in paper producing industry. Ultrason Sonochem 2020;64:105002. link1

[176] Zupanc M, Kosjek T, Petkovšek M, Dular M, Kompare B, Širok B, et al. Shearinduced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrason Sonochem 2014;21(3):1213–21. link1

[177] Vilarroig J, Martínez R, Zuriaga-Agustí E, Torró S, Galián M, Chiva S. Design and optimization of a semi-industrial cavitation device for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry. Water Environ Res 2020;92(12):2060–71. link1

[178] Kosel J, Šinkovec A, Dular M. A novel rotation generator of hydrodynamic cavitation for the fibrillation of long conifer fibers in paper production. Ultrason Sonochem 2019;59:104721. link1

[179] Petkovšek M, Mlakar M, Levstek M, Strazˇar M, Širok B, Dular M. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration. Ultrason Sonochem 2015;26:408–14. link1

[180] Sezˇun M, Kosel J, Zupanc M, Hocˇevar M, Vrtovšek J, Petkovšek M, et al. Cavitation as a potential technology for wastewater management—an example of enhanced nutrient release from secondary pulp and paper mill sludge. Stroj Vestn-J Mech Eng 2019;65(11–12):641–9. link1

[181] Kovacˇicˇ A, Škufca D, Zupanc M, Gostiša J, Bizjan B, Krištofelc N, et al. The removal of bisphenols and other contaminants of emerging concern by hydrodynamic cavitation: from lab-scale to pilot-scale. Sci Total Environ 2020;743:140724. link1

[182] Dular M, Griessler-Bulc T, Gutierrez-Aguirre I, Heath E, Kosjek T, Krivograd Klemencˇicˇ A, et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason Sonochem 2016;29:577–88. link1

[183] Ranade VV, Kulkarni AA, Bhandari VM, inventors; Council of Scientific & Industrial Research (New Delhi, IN), assignee. Vortex diodes as effluent treatment devices. United States Patent 9422952. 2016 Aug 23.

[184] Jain P, Bhandari VM, Balapure K, Jena J, Ranade VV, Killedar DJ. Hydrodynamic cavitation using vortex diode: an efficient approach for elimination of pathogenic bacteria from water. J Environ Manage 2019;242:210–9. link1

[185] Gaikwad V, Ranade V. Disinfection of water using vortex diode as hydrodynamic cavitation reactor. Asian J Chem 2016;28(8):1867–70. link1

[186] Suryawanshi NB, Bhandari VM, Sorokhaibam LG, Ranade VV. A non-catalytic deep desulphurization process using hydrodynamic cavitation. Sci Rep 2016;6(1):33021. link1

Related Research