Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 27, Issue 8 doi: 10.1016/j.eng.2022.08.011

The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture

a College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
b College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China

Received: 2022-05-19 Revised: 2022-07-04 Accepted: 2022-08-01 Available online: 2022-09-30

Next Previous


Strategies aimed at defining, discovering, and developing alternatives to traditional antibiotics will underlie the development of sustainable agricultural systems. Among such strategies, antimicrobial peptides (AMPs) with broad-spectrum antimicrobial activity and multifaceted mechanisms of action are recognized as ideal alternatives in the post-antibiotic era. In particular, AMPs derived from microbes with active metabolisms that can adapt to a variety of extreme environments have long been sought after. Consequently, this review summarizes information on naturally occurring AMPs, including their biological activity, antimicrobial mechanisms, and the preparation of microbial-derived AMPs; it also outlines their applications and the challenges presented by their use in the agroindustry. By dissecting the research results on microbial-derived AMPs of previous generations, this study contributes valuable knowledge on the exploration and realization of the applications of AMPs in sustainable agriculture.








[ 1 ] Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009;53(12):5046‒54. link1

[ 2 ] Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16(2):161‒8. link1

[ 3 ] Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 2018;18(1):37‒46. link1

[ 4 ] Ma B, Fang C, Lu L, Wang M, Xue X, Zhou Y, et al. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-b-lactamase. Nat Commun 2019;10(1):3517. link1

[ 5 ] Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020;9(1):24. link1

[ 6 ] Chen CH, Bepler T, Pepper K, Fu D, Lu TK. Synthetic molecular evolution of antimicrobial peptides. Curr Opin Biotechnol 2022;75:102718. link1

[ 7 ] Awan AR, Blount BA, Bell DJ, Shaw WM, Ho JCH, McKiernan RM, et al. Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker’s yeast. Nat Commun 2017;8:15202. link1

[ 8 ] Inoue M. Total synthesis and functional analysis of non-ribosomal peptides. Chem Rec 2011;11(5):284‒94. link1

[ 9 ] Süssmuth RD, Mainz A. Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl 2017;56(14):3770‒821. link1

[10] Travin DY, Watson ZL, Metelev M, Ward FR, Osterman IA, Khven IM, et al. Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nat Commun 2019;10:4563. link1

[11] Ma J, Huang H, Xie Y, Liu Z, Zhao J, Zhang C, et al. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents. Nat Commun 2017;8:391. link1

[12] Covas C, Almeida B, Esteves AC, Lourenço J, Domingues P, Caetano T, et al. Peptone from casein, an antagonist of nonribosomal peptide synthesis: a case study of pedopeptins produced by Pedobacter lusitanus NL19. N Biotechnol 2021;60:62‒71. link1

[13] Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016;535(7613):511‒6. link1

[14] Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 2015;348(6239):1106‒12. link1

[15] Duncan KR, Crüsemann M, Lechner A, Sarkar A, Li J, Ziemert N, et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 2015;22(4):460‒71. link1

[16] Santos-Aberturas J, Chandra G, Frattaruolo L, Lacret R, Pham TH, Vior NM, et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 2019;47(9):4624‒37. link1

[17] Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 2015;13 (8):509‒23. link1

[18] Son S, Hong YS, Jang M, Heo KT, Lee B, Jang JP, et al. Genomics-driven discovery of chlorinated cyclic hexapeptides ulleungmycins A and B from a Streptomyces species. J Nat Prod 2017;80(11):3025‒31. link1

[19] Jang JP, Nogawa T, Futamura Y, Shimizu T, Hashizume D, Takahashi S, et al. Octaminomycins A and B, cyclic octadepsipeptides active against Plasmodium falciparum. J Nat Prod 2017;80(1):134‒40. link1

[20] Bekiesch P, Zehl M, Domingo-Contreras E, Martín J, Pérez-Victoria I, Reyes F, et al. Viennamycins: lipopeptides produced by a Streptomyces sp. J Nat Prod 2020;83(8):2381‒9. link1

[21] Drider D, Bendali F, Naghmouchi K, Chikindas ML. Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 2016;8(4):177‒82. link1

[22] Flaherty RA, Freed SD, Lee SW. The wide world of ribosomally encoded bacterial peptides. PLoS Pathog 2014;10(7):e1004221. link1

[23] Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021;45(1):fuaa039. link1

[24] Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, et al. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022;21(2):1657‒76. link1

[25] Youssef FS, Ashour ML, Singab ANB, Wink M. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar Drugs 2019;17(10):559. link1

[26] Hüttel W. Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl Microbiol Biotechnol 2021;105(1):55‒66. link1

[27] Mattay J, Houwaart S, Hüttel W. Cryptic production of trans-3- hydroxyproline in echinocandin B biosynthesis. Appl Environ Microbiol 2018;84(7):e02370‒17. link1

[28] Shi WL, Chen XL, Wang LX, Gong ZT, Li S, Li CL, et al. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot 2016;67(8):2191‒205. link1

[29] Grigoletto DF, Trivella DBB, Tempone AG, Rodrigues A, Correia AML, Lira SP. Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. Braz. J Microbiol 2020;51(3):989‒97. link1

[30] Li Z, Wang X, Wang X, Teng D, Mao R, Hao Y, et al. Research advances on plectasin and its derivatives as new potential antimicrobial candidates. Process Biochem 2017;56:62‒70. link1

[31] Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 2010;328(5982):1168‒72. link1

[32] Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 2014;289(50):34953‒64. link1

[33] Oeemig JS, Lynggaard C, Knudsen DH, Hansen FT, Nørgaard KD, Schneider T, et al. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J Biol Chem 2012;287(50):42361‒72. link1

[34] Zhang Y, Zhou L, Liu Y, Zhao X, Lian X, Zhang J, et al. A peptide from budding yeast GAPDH serves as a promising antifungal against Cryptococcus neoformans. Microbiol Spectr 2022;10(1):e0082621. link1

[35] Branco P, Coutinho R, Malfeito-Ferreira M, Prista C, Albergaria H. Wine spoilage control: impact of saccharomycin on Brettanomyces bruxellensis and its conjugated effect with sulfur dioxide. Microorganisms 2021;9(12):2528. link1

[36] Landi N, Clemente A, Pedone PV, Ragucci S, DiMaro A. An updated review of bioactive peptides from mushrooms in a well-defined molecular weight range. Toxins 2022;14(2):84. link1

[37] Guzmán F, Wong G, Román T, Cárdenas C, Alvárez C, Schmitt P, et al. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) butcher and bactericidal activity improvement. Mar Drugs 2019;17(8):453. link1

[38] Brasil BDAF, de Siqueira FG, Salum TFC, Zanette CM, Spier MR. Microalgae and cyanobacteria as enzyme biofactories. Algal Res 2017;25:76‒89. link1

[39] MubarakAli D, MohamedSaalis J, Sathya R, Irfan N, Kim JW. An evidence of microalgal peptides to target spike protein of COVID-19: in silico approach. Microb Pathog 2021;160:160105189. link1

[40] Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 2017;90:760‒76. link1

[41] Mi Y, Zhang J, He S, Yan X. New peptides isolated from marine cyanobacteria, an overview over the past decade. Mar Drugs 2017;15(5):132. link1

[42] Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, et al. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022;62(9):999‒1029. link1

[43] Vestola J, Shishido TK, Jokela J, Fewer DP, Aitio O, Permi P, et al. Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci USA 2014;111(18):E1909‒17. link1

[44] Almaliti J, Malloy KL, Glukhov E, Spadafora C, Gutiérrez M, Gerwick WH. Dudawalamides A‒D, antiparasitic cyclic depsipeptides from the marine cyanobacterium Moorea producens. J Nat Prod 2017;80(6):1827‒36. link1

[45] Fidor A, Konkel R, Mazur-Marzec H. Bioactive peptides produced by cyanobacteria of the genus Nostoc: a review. Mar Drugs 2019;17(10):561. link1

[46] Ujvárosi AZ, Hercog K, Riba M, Gonda S, Filipicˇ M, Vasas G, et al. The cyanobacterial oligopeptides microginins induce DNA damage in the human hepatocellular carcinoma (HepG2) cell line. Chemosphere 2020;240:124880. link1

[47] Essack M, Alzubaidy HS, Bajic VB, Archer JA. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry. Toxins 2014;6(11):3058‒76. link1

[48] Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 2017;8:828. link1

[49] Tareq FS, Kim JH, Lee MA, Lee HS, Lee YJ, Lee JS, et al. Ieodoglucomides A and B from a marine-derived bacterium Bacillus licheniformis. Org Lett 2012;14(6):1464‒7. link1

[50] Wang J, Liu YM, Cao W, Yao KW, Liu ZQ, Guo JY. Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metab Brain Dis 2012;27(2):159‒65. link1

[51] Valero Y, Saraiva-Fraga M, Costas B, Guardiola FA. Antimicrobial peptides from fish: beyond the fight against pathogens. Rev Aquacult 2020;12(1):224‒53. link1

[52] Kepp O, Kroemer G. Autophagy induction by thiostrepton for the improvement of anticancer therapy. Autophagy 2020;16(6):1166‒7. link1

[53] Zhang J, Zhong J. The journey of nisin development in China, a natural-green food preservative. Protein Cell 2015;6(10):709‒11. link1

[54] Cannatelli A, Principato S, Colavecchio OL, Pallecchi L, Rossolini GM. Synergistic activity of colistin in combination with resveratrol against colistin-resistant Gram-negative pathogens. Front Microbiol 2018;9:1808. link1

[55] Lopez-Pena CL, McClements DJ. Impact of a food-grade cationic biopolymer (e-polylysine) on the digestion of emulsified lipids: in vitro study. Food Res Int 2015;75:34‒40. link1

[56] Wang S, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H, et al. Nanoenzymereinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett 2020;20(7):5149‒58. link1

[57] Nicolaou KC. How thiostrepton was made in the laboratory. Angew Chem Int Ed Engl 2012;51(50):12414‒36. link1

[58] Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009;30(3):131‒41. link1

[59] Yeung ATY, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 2011;68(13):2161‒76. link1

[60] Mahdi LH, Jabbar HS, Auda IG. Antibacterial immunomodulatory and antibiofilm triple effect of salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. Int J Biol Macromol 2019;134:1132‒44. link1

[61] Hernández-González JC, Martínez-Tapia A, Lazcano-Hernández G, García-Pérez BE, Castrejón-Jiménez NS. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 2021;11(4):979. link1

[62] Der Torossian TM, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun 2019;55 (100):15020‒32. link1

[63] Jenab A, Roghanian R, Emtiazi G. Bacterial natural compounds with antiinflammatory and immunomodulatory properties (mini review). Drug Des Devel Ther 2020;14:3787‒801. link1

[64] Zhang Y, Liu C, Dong B, Ma X, Hou L, Cao X, et al. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 2015;38(2):756‒64. link1

[65] Rüter C, Buss C, Scharnert J, Heusipp G, Schmidt MA. A newly identified bacterial cell-penetrating peptide that reduces the transcription of proinflammatory cytokines. J Cell Sci 2010;123(13):2190‒8. link1

[66] Yu H, Ding X, Shang L, Zeng X, Liu H, Li N, et al. Protective ability of biogenic antimicrobial peptide microcin J25 against enterotoxigenic Escherichia coliinduced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 cells. Front Cell Infect Microbiol 2018;8:242. link1

[67] Malvisi M, Stuknyte˙ M, Magro G, Minozzi G, Giardini A, De Noni I, et al. Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. J Dairy Sci 2016;99(3):2288‒96. link1

[68] Laman AG, Lathe R, Savinov GV, Shepelyakovskaya AO, Boziev KM, Baidakova LK, et al. Innate immunity: bacterial cell-wall muramyl peptide targets the conserved transcription factor YB-1. FEBS Lett 2015;589(15):1819‒24. link1

[69] Dou X, Zhu X, Wang J, Dong N, Shan A. Novel design of heptad amphiphiles to enhance cell selectivity, salt resistance, antibiofilm properties and their membrane-disruptive mechanism. J Med Chem 2017;60(6):2257‒70. link1

[70] Islam MS, Mohamed G, Polash SA, Hasan MA, Sultana R, Saiara N, et al. Antimicrobial peptides from plants: a cDNA-library based isolation, purification, characterization approach and elucidating their modes of action. Int J Mol Sci 2021;22(16):8712. link1

[71] Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011;29(9):464‒72. link1

[72] Tuersuntuoheti T, Wang Z, Wang Z, Liang S, Li X, Zhang M. Review of the application of ε-poly-L-lysine in improving food quality and preservation. J Food Process Preserv 2019;43(10):e14153. link1

[73] Zhang Q, Yan Z, Meng Y, Hong X, Shao G, Ma J, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 2021;8(1):48. link1

[74] Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K, et al. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrob Agents Chemother 2009;53(8):3211‒7. link1

[75] Liu G, Song Z, Yang X, Gao Y, Wang C, Sun B. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04. Food Control 2016;62:62309‒16. link1

[76] Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 2004;576(1‒2):205‒10.

[77] Zhang S, Luo L, Sun X, Ma A. Bioactive peptides: a promising alternative to chemical preservatives for food preservation. J Agric Food Chem 2021;69(42):12369‒84. link1

[78] Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, et al. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021;202:111682. link1

[79] Su Z, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J. Role of transmembrane potential and defects on the permeabilization of lipid bilayers by alamethicin, an ion-channel-forming peptide. Langmuir 2018;34(21):6249‒60. link1

[80] Travkova OG, Moehwald H, Brezesinski G. The interaction of antimicrobial peptides with membranes. Adv Colloid Interface Sci 2017;247:521‒32. link1

[81] Wang Y, Feng K, Yang H, Zhang Z, Yuan Y, Yue T. Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front Microbiol 2018;9:597. link1

[82] Roces C, Courtin P, Kulakauskas S, Rodríguez A, Chapot-Chartier MP, Martínez B. Isolation of Lactococcus lactis mutants simultaneously resistant to the cell wall-active bacteriocin Lcn972, lysozyme, nisin, and bacteriophage c2. Appl Environ Microbiol 2012;78(12):4157‒63. link1

[83] Madera C, García P, Rodríguez A, Suárez JE, Martínez B. Prophage induction in Lactococcus lactis by the bacteriocin lactococcin 972. Int J Food Microbiol 2009;129(1):99‒102. link1

[84] Martínez B, Böttiger T, Schneider T, Rodríguez A, Sahl HG, Wiedemann I. Specific interaction of the unmodified bacteriocin lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol 2008;74(15):4666‒70. link1

[85] Héchard Y, Sahl HG. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 2002;84(5‒6):545‒57.

[86] Münch D, Müller A, Schneider T, Kohl B, Wenzel M, Bandow JE, et al. The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 2014;289(17):12063‒76. link1

[87] Reiners J, Lagedroste M, Gottstein J, Adeniyi ET, Kalscheuer R, Poschmann G, et al. Insights in the antimicrobial potential of the natural nisin variant nisin H. Front Microbiol 2020;11:573614. link1

[88] Sun Z, Zhong J, Liang X, Liu J, Chen X, Huan L. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob Agents Chemother 2009;53(5):1964‒73. link1

[89] Kawada-Matsuo M, Watanabe A, Arii K, Oogai Y, Noguchi K, Miyawaki S, et al. Staphylococcus aureus virulence affected by an alternative nisin a resistance mechanism. Appl Environ Microbiol 2020;86(8):e02923‒19. link1

[90] Barbosa JC, Gonçalves S, Makowski M, Silva ÍC, Caetano T, Schneider T, et al. Insights into the mode of action of the two-peptide lantibiotic lichenicidin. Colloids Surf B Biointerfaces 2022;211:112308. link1

[91] Zaschke-Kriesche J, Behrmann LV, Reiners J, Lagedroste M, Gröner Y, Kalscheuer R, et al. Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem 2019;27(15):3454‒62. link1

[92] Oman TJ, Lupoli TJ, Wang TSA, Kahne D, Walker S, van der Donk WA. Haloduracin a binds the peptidoglycan precursor lipid II with 2:1 stoichiometry. J Am Chem Soc 2011;133(44):17544‒7. link1

[93] Bakhtiary A, Cochrane SA, Mercier P, McKay RT, Miskolzie M, Sit CS, et al. Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147. J Am Chem Soc 2017;139(49):17803‒10. link1

[94] Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 2013;11(2):95‒105. link1

[95] Metelev M, Serebryakova M, Ghilarov D, Zhao Y, Severinov K. Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol 2013;195(18):4129‒37. link1

[96] Cociancich S, Pesic A, Petras D, Uhlmann S, Kretz J, Schubert V, et al. The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat Chem Biol 2015;11(3):195‒7. link1

[97] Fredersdorf M, Kurz M, Bauer A, Ebert MO, Rigling C, Lannes L, et al. Conformational analysis of an antibacterial cyclodepsipeptide active against Mycobacterium tuberculosis by a combined ROE and RDC analysis. Chemistry 2017;23(24):5729‒35. link1

[98] Radaic A, de Jesus MB, Kapila YL. Bacterial anti-microbial peptides and nanosized drug delivery systems: the state of the art toward improved bacteriocins. J Control Release 2020;321:100‒18. link1

[99] Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 2017;61(4):e02340‒16. link1

[100] Schwalen CJ, Hudson GA, Kille B, Mitchell DA. Bioinformatic expansion and discovery of thiopeptide antibiotics. J Am Chem Soc 2018;140(30):9494‒501. link1

[101] Gomez-Escribano JP, Song L, Bibb MJ, Challis GL. Posttranslational β-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chem Sci 2012;3 (12):3522‒5. link1

[102] Pantel L, Florin T, Dobosz-Bartoszek M, Racine E, Sarciaux M, Serri M, et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol Cell 2018;70(1):83‒94. link1

[103] Espitia PJP, de Fátima Ferreira Soares N, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA. Bioactive peptides: synthesis, properties, and applications in the packaging and preservation of food. Compr Rev Food Sci Food Saf 2012;11(2):187‒204. link1

[104] Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022;7(1):48. link1

[105] Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2010;2(1):1‒9. link1

[106] Akalın AS. Dairy-derived antimicrobial peptides: action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci Technol 2014;36(2):79‒95. link1

[107] Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceuticalgrade bioactive peptides. Biotechnol Adv 2011;29(3):272‒7. link1

[108] Cunha SA, Pintado ME. Bioactive peptides derived from marine sources: biological and functional properties. Trends Food Sci Technol 2022;119:348‒70. link1

[109] de Castro RJS, Sato HH. Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 2015;74:185‒98. link1

[110] Ryder K, AeD B, McConnell M, Carne A. Towards generation of bioactive peptides from meat industry waste proteins: generation of peptides using commercial microbial proteases. Food Chem 2016;208:42‒50. link1

[111] Sun Y, Chang R, Li Q, Li B. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol 2016;242(5):685‒92. link1

[112] Ovando CA, Carvalho J, de Melo Pereira GV, Jacques P, Soccol VT, Soccol CR. Functional properties and health benefits of bioactive peptides derived from Spirulina: a review. Food Res Int 2018;34(1):34‒51. link1

[113] Oliveira AS, Ferreira C, Pereira JO, Pintado ME, Carvalho AP. Spent brewer’s yeast (Saccharomyces cerevisiae) as a potential source of bioactive peptides: an overview. Int J Biol Macromol 2022;208:1116‒26. link1

[114] Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, et al. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: a review. Compr Rev Food Sci Food Saf 2021;20(1):863‒99. link1

[115] Wibowo D, Zhao CX. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 2019;103(2):659‒71. link1

[116] Zhang C, Seyedsayamdost MR. Discovery of a cryptic depsipeptide from Streptomyces ghanaensis via MALDI-MS-guided high-throughput elicitor screening. Angew Chem Int Ed Engl 2020;59(51):23005‒9. link1

[117] Tracanna V, de Jong A, Medema MH, Kuipers OP. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev 2017;41(3):417‒29. link1

[118] Hover BM, Kim SH, Katz M, Charlop-Powers Z, Owen JG, Ternei MA, et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 2018;3(4):415‒22. link1

[119] Kim K, Choe D, Lee DH, Cho BK. Engineering biology to construct microbial chassis for the production of difficult-to-express proteins. Int J Mol Sci 2020;21(3):990. link1

[120] Ishida H, Nguyen LT, Gopal R, Aizawa T, Vogel HJ. Overexpression of antimicrobial, anticancer, and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. J Am Chem Soc 2016;138 (35):11318‒26. link1

[121] Pina AS, Lowe CR, Roque ACA. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 2014;32(2):366‒81. link1

[122] Mejía-Pitta A, Broset E, de la Fuente-Nunez C. Probiotic engineering strategies for the heterologous production of antimicrobial peptides. Adv Drug Deliv Rev 2021;176:113863. link1

[123] Cao J, de la Fuente-Nunez C, Ou RW, Torres MT, Pande SG, Sinskey AJ, et al. Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth Biol 2018;7(3):896‒902. link1

[124] Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 2014;98(12):5301‒17. link1

[125] Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022;59:107968. link1

[126] Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021;50(13):7820‒80. link1

[127] Santos JCP, Sousa RCS, Otoni CG, Moraes ARF, Souza VGL, Medeiros EAA, et al. Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol 2018;48:48179‒94. link1

[128] Liu Y, Sameen DE, Ahmed S, Dai J, Qin W. Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol 2021;112:471‒83. link1

[129] Rai M, Pandit R, Gaikwad S, Kövics G. Antimicrobial peptides as natural biopreservative to enhance the shelf-life of food. J Food Sci Technol 2016;53(9):3381‒94. link1

[130] Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021;14(6):2257‒78. link1

[131] Ross AC, Liu H, Pattabiraman VR, Vederas JC. Synthesis of the lantibiotic lactocin S using peptide cyclizations on solid phase. J Am Chem Soc 2010;132(2):462‒3. link1

[132] Erdem Büyükkiraz M, Kesmen Z. Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 2022;132(3):1573‒96. link1

[133] Józefiak D, Sip A, Rutkowski A, Rawski M, Kaczmarek S, Wołun´ -Cholewa M, et al. Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poult Sci 2012;91(8):1899‒907. link1

[134] Maldonado-Barragán A, Cárdenas N, Martínez B, Ruiz-Barba JL, Fernández- Garayzábal JF, Rodríguez JM, et al. Garvicin A, a novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 2013;79(14):4336‒46. link1

[135] Li X, Jaafar R, He Y, Wu B, Kania P, Buchmann K. Effects of a Pseudomonas H6 surfactant on rainbow trout and Ichthyophthirius multifiliis: in vivo exposure. Aquaculture 2022;547:737479. link1

[136] Wang S, Zeng XF, Wang QW, Zhu JL, Peng Q, Hou CL, et al. The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers. J Anim Sci 2015;93(10):4750‒60. link1

[137] Wang HT, Yu C, Hsieh YH, Chen SW, Chen BJ, Chen CY. Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens—its potential role as an alternative to feed antibiotics. J Sci Food Agric 2011;91(13):2338‒43. link1

[138] Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 2020;11:582779. link1

[139] Lauková A, Chrastinová L, Plachá I, Kandricˇáková A, Szabóová R, Strompfová V, et al. Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob Proteins 2014;6(1):41‒6. link1

[140] Hu J, Ma L, Nie Y, Chen J, Zheng W, Wang X, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe 2018;24(6):817‒32. link1

[141] Cutler SA, Lonergan SM, Cornick N, Johnson AK, Stahl CH. Dietary inclusion of colicin E1 is effective in preventing postweaning diarrhea caused by F18- positive Escherichia coli in pigs. Antimicrob Agents Chemother 2007;51(11):3830‒5. link1

[142] Wang HT, Li YH, Chou IP, Hsieh YH, Chen BJ, Chen CY. Albusin B modulates lipid metabolism andincreases antioxidant defense in broilerchickens by a proteomic approach. J Sci Food Agric 2013;93(2):284‒92. link1

[143] Barboza-Corona JE, de la Fuente-Salcido N, Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis. Vet Microbiol 2009;138(1‒2):179‒83.

[144] Zhao H, Shao D, Jiang C, Shi J, Li Q, Huang Q, et al. Biological activity of lipopeptides from Bacillus. Appl Microbiol Biotechnol 2017;101(15):5951‒60. link1

[145] Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins targeting Gramnegative phytopathogenic bacteria: plantibiotics of the future. Front Microbiol 2020;11:575981. link1

[146] Han X, Shen D, Xiong Q, Bao B, Zhang W, Dai T, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl Environ Microbiol 2021;87(23):e01601‒21. link1

[147] Ma Z, Ongena M, Höfte M. The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Rep 2017;36(11):1731‒46. link1

[148] Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, et al. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 2017;83(19):e01075‒17. link1

[149] Jung WJ, Mabood F, Souleimanov A, Smith DL. Induction of defense-related enzymes in soybean leaves by class IId bacteriocins (thuricin 17 and bacthuricin F4) purified from Bacillus strains. Microbiol Res 2011;167(1):14‒9. link1

[150] Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, et al. The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE*1-1-14 is involved in pathogen suppression and root colonization. Mol Plant Microbe Interact 2015;28(7):800‒10. link1

[151] Lei S, Zhao H, Pang B, Qu R, Lian Z, Jiang C, et al. Capability of iturin from Bacillus subtilis to inhibit Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 2019;103(11):4377‒92. link1

[152] Xiao J, Guo X, Qiao X, Zhang X, Chen X, Zhang D. Activity of fengycin and iturin a isolated from Bacillus subtilis Z-14 on Gaeumannomyces graminis var. tritici and soil microbial diversity. Front Microbiol 2021;12:682437. link1

[153] Medeot DB, Fernandez M, Morales GM, Jofré E. Fengycins from Bacillus amyloliquefaciens MEP(2)18 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol 2019;10:103107. link1

[154] Yu C, Liu X, Zhang X, Zhang M, Gu Y, Ali Q, et al. Mycosubtilin produced by Bacillus subtilis ATCC6633 inhibits growth and mycotoxin biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins 2021;13(11):791. link1

[155] Príncipe A, Fernandez M, Torasso M, Godino A, Fischer S. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol Res 2018;212‒213:94‒102.

[156] de Mattos-Shipley KMJ, Greco C, Heard DM, Hough G, Mulholland NP, Vincent JL, et al. The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis. Chem Sci 2018;9(17):4109‒17. link1

[157] Bi J, Tian C, Jiang J, Zhang G, Hao H, Hou H. Antibacterial activity and potential application in food packaging of peptides derived from turbot viscera hydrolysate. J Agric Food Chem 2020;68(37):9968‒77. link1

[158] Fu L, Wang C, Ruan X, Li G, Zhao Y, Wang Y. Preservation of large yellow croaker (Pseudosciaena crocea) by coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208. Int J Food Microbiol 2018;266:60‒8. link1

[159] Lv X, Lin Y, Jie Y, Sun M, Zhang B, Bai F, et al. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai. Eur Food Res Technol 2018;244(2):323‒31. link1

[160] Maky MA, Ishibashi N, Zendo T, Perez RH, Doud JR, Karmi M, et al. Enterocin F4-9, a novel O-linked glycosylated bacteriocin. Appl Environ Microbiol 2015;81(14):4819‒26. link1

[161] Jiang H, Zou J, Cheng H, Fang J, Huang G. Purification, characterization, and mode of action of pentocin JL-1, a novel bacteriocin isolated from Lactobacillus pentosus, against drug-resistant Staphylococcus aureus. BioMed Res Int 2017;2017:7657190. link1

[162] Ramos B, Brandão TRS, Teixeira P, Silva CLM. Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiol 2020;85:103282. link1

[163] Chopra L, Singh G, Jena KK, Sahoo DK. Sonorensin: a new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep 2015;5(1):13412. link1

[164] Halimi B, Dortu C, Arguelles-Arias A, Thonart P, Joris B, Fickers P. Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics Antimicrob Proteins 2010;2(2):120‒5. link1

[165] Zhang J, Liu G, Li P, Qu Y. Pentocin 31‒1, a novel meat-borne bacteriocin and its application as biopreservative in chill-stored tray-packaged pork meat. Food Control 2010;21(2):198‒202. link1

[166] Lv X, Ma H, Sun M, Lin Y, Bai F, Li J, et al. A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as biopreservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control 2018;89:8922‒31. link1

[167] Sarika AR, Lipton AP, Aishwarya MS. Biopreservative efficacy of bacteriocin GP1 of Lactobacillus rhamnosus GP1 on stored fish filets. Front Nutr 2019;6:29. link1

[168] Toral L, Rodríguez M, Béjar V, Sampedro I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front Microbiol 2018;9:1315. link1

[169] Jia N, Xie Y, Zhang H, Liu H, Feng J, Zhu L, et al. Effect of bacteriocin treatment on storage and quality of postharvest strawberry fruit. Adv Mat Res 2012;554‒556:1547‒52.

[170] Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today 2021;39:101229. link1

Related Research