Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 23, Issue 4 doi: 10.1016/j.eng.2022.08.014

Can Food–Energy–Water Nexus Research Keep Pace with Agricultural Innovation?

a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
c Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
d Department of Agricultural Leadership, Education and Communications, The University of Tennessee, Knoxville, TN 37996, USA
e Smith Center for International Agriculture, The University of Tennessee, Knoxville, TN 37996, USA
f Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
g Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
h Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
i Department of Industrial and Systems Engineering, The University of Tennessee, Knoxville, TN 37996, USA

Received: 2023-01-31 Revised: 2023-02-28 Accepted: 2023-04-06 Available online: 2023-04-26

Next Previous

Figures

Fig. 1

Fig. 2

References

[ 1 ] D’Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D, Dell’Angelo J, et al. The global food‒energy‒water nexus. Rev Geophys 2018;56(3):456‒531. link1

[ 2 ] Simpson GB, Jewitt GPW. The development of the water‒energy‒food nexus as a framework for achieving resource security: a review. Front Environ Sci 2019;7:8. link1

[ 3 ] King A. Technology: the future of agriculture. Nature 2017;544(7651):S21‒3. link1

[ 4 ] De Martinis D, Rybicki EP, Colonna N, Benvenuto E, Llorente B. Editorial: next generation agriculture: understanding plant life for food, health and energy. Front Plant Sci 2020;11:1238. link1

[ 5 ] Ziv G, Baran E, Nam S, Rodríguez-Iturbe I, Levin SA. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc Natl Acad Sci USA 2012;109(15):5609‒14. link1

[ 6 ] Petersen-Perlman JD, Veilleux JC, Wolf AT. International water conflict and cooperation challenges and opportunities. Water Int 2017;42(2):105‒20. link1

[ 7 ] Barbarossa V, Schmitt RJP, Huijbregts MAJ, Zarfl C, King H, Schipper AM. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc Natl Acad Sci USA 2020;117(7):3648‒55. link1

[ 8 ] Grünwald R, Feng Y, Wang W. Reconceptualization of the transboundary water interaction nexus (TWINS): approaches, opportunities and challenges. Water Int 2020;45(5):458‒78. link1

[ 9 ] Turhan Y. The hydro-political dilemma in Africa water geopolitics: the case of the Nile River basin. Afr Secur Rev 2021;30(1):66‒85. link1

[10] Wang K, Liu J, Xia J, Wang Z, Meng Y, Chen H, et al. Understanding the impacts of climate change and socio-economic development through food‒energy‒water nexus: a case study of Mekong River delta. Resour Conserv Recycling 2021;167:105390. link1

[11] Zhuang J, Sun H, Sayler G, Kline KL, Dale VH, Jin M, et al. Food‒energy‒water crises in the United States and China: commonalities and asynchronous experiences support integration of global efforts. Environ Sci Technol 2021;55(3):1446‒55. link1

[12] Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food 2021;2(3):198‒209. link1

[13] United Nations World Water Assessment Programme (WWAP). The United Nations world water development report 2022: groundwater: making the invisible visible. Report. Paris: UNESCO; 2022 Mar 21. link1

[14] United Nations, Department of Economic and Social Affairs (UNDESA). World population prospects 2019: highlights. Report. New York: United Nations, Department of Economic and Social Affairs (UNDESA); 2019 Jun 17. link1

[15] Sustainable Development Solutions Network (SDSN). (2013). Solutions for sustainable agriculture and food systems. Technical report for the post-2015 development agenda. Report. Paris: SDSN; 2013 Sep 18.

[16] United Nations World Water Assessment Programme (WWAP). The United Nations world water development report 2014: water and energy Report. Paris: UNESCO; 2014 Mar 21.

[17] The U.S. Energy Information Administration (EIA). International energy wutlook 2019. Report. Washington, DC: The US Energy Information Administration; 2019 Nov.

[18] D’Odorico P, Chiarelli DD, Rosa L, Bini A, Zilberman D, Rulli MC. The global value of water in agriculture. Proc Natl Acad Sci USA 2020;117(36):21985‒93. link1

[19] Pastor AV, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, et al. The global nexus of food‒trade‒water sustaining environmental flows by 2050. Nat Sustain 2019;2(6):499‒507. link1

[20] Vora N, Fath BD, Khanna V. A systems approach to assess trade dependencies in US food‒energy‒water nexus. Environ Sci Technol 2019;53(18):10941‒50. link1

[21] Laborde D, Martin W, Swinnen J, Vos R. COVID-19 risks to global food security. Science 2020;369(6503):500‒2. link1

[22] Gliessman S. A vision for future food and agriculture systems. Agroecol Sustain Food Syst 2020;44(2):137‒8. link1

[23] Miao R, Khanna M. Harnessing advances in agricultural technologies to optimize resource utilization in the food‒energy‒water nexus. Annu Rev Resour Econ 2020;12(1):65‒85. link1

[24] Payet-Burin R, Kromann M, Pereira-Cardenal S, Strzepek KM, Bauer-Gottwein P. Nexus vs silo investment planning under uncertainty. Front Water 2021;3:672382. link1

[25] Zhao P, Zhang M. The impact of urbanization on energy consumption: a 30-year review in China. Urban Clim 2018;24:940‒53. link1

[26] McDougall R, Kristiansen P, Rader R. Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability. Proc Natl Acad Sci USA 2019;116(1):129‒34. link1

[27] Basso B, Antle J. Digital agriculture to design sustainable agricultural systems. Nat Sustain 2020;3(4):254‒6. link1

[28] Wiegleb V, Bruns A. What is driving the water‒energy‒food nexus? Discourses, knowledge, and politics of an emerging resource governance concept. Front Environ Sci 2018;6:128. link1

[29] Schwindenhammer S, Gonglach D. SDG implementation through technology? Governing food‒water‒technology nexus challenges in urban agriculture. Politics Gov 2021;9(1):176‒86. link1

[30] Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, et al. Landuse futures in the shared socio-economic pathways. Glob Environ Change 2017;42:331‒45. link1

[31] Vinca A, Riahi K, Rowe A, Djilali N. Climate‒land‒energy‒water nexus models across scales: progress, gaps and best accessibility practices. Front Environ Sci 2021;9:691523. link1

[32] Fernando Y, Tseng ML, Aziz N, Ikhsan RB, Wahyuni-TD IS. Waste-to-energy supply chain management on circular economy capability: an empirical study. Sustainable Prod Consumption 2022;31(1):26‒38. link1

[33] Barron-Gafford GA, Pavao-Zuckerman MA, Minor RL, Sutter LF, BarnettMoreno I, Blackett DT, et al. Agrivoltaics provide mutual benefits across the food‒energy‒water nexus in drylands. Nat Sustain 2019;2(9):848‒55. link1

[34] Yin C, Pereira P, Hua T, Liu Y, Zhu J, Zhao W. Recover the food‒energy‒water nexus from COVID-19 under Sustainable Development Goals acceleration actions. Sci Total Environ 2022;817:153013. link1

[35] Lawford RG. A design for a data and information service to address the knowledge needs of the water‒energy‒food (W‒E‒F) nexus and strategies to facilitate its implementation. Front Environ Sci 2019;7:56. link1

[36] Díaz S, Zafra-Calvo N, Purvis A, Verburg PH, Obura D, Leadley P, et al. Set ambitious goals for biodiversity and sustainability. Science 2020;370(6515):411‒3. link1

[37] Vera I, Wicke B, Lamers P, Cowie A, Repo A, Heukels B, et al. Land use for bioenergy: synergies and tradeoffs between sustainable development goals. Renew Sustain Energy Rev 2022;161(80):112409. link1

[38] Lee SH, Choi JY, Hur SO, Taniguchi M, Masuhara N, Kim KS, et al. Foodcentric interlinkages in agricultural food‒energy‒water nexus under climate change and irrigation management. Resour Conserv Recycling 2020;163:105099. link1

[39] Carvalho PN, Finger DC, Masi F, Cipolletta G, Oral HV, Tóth A, et al. Naturebased solutions addressing the water‒energy‒food nexus: review of theoretical concepts and urban case studies. J Clean Prod 2022;338:130652. link1

[40] McCarthy B, Anex R, Wang Y, Kendall AD, Anctil A, Haacker EMK, et al. Trends in water use, energy consumption, and carbon emissions from irrigation: role of shifting technologies and energy sources. Environ Sci Technol 2020;54(23):15329‒37. link1

[41] Muscat A, de Olde EM, Ripoll-Bosch R, Van Zanten HHE, Metze TAP, Termeer CJAM, et al. Principles, drivers and opportunities of a circular bioeconomy. Nat Food 2021;2(8):561‒6. link1

[42] Bielicki JM, Beetstra MA, Kast JB, Wang Y, Tang S. Stakeholder perspectives on sustainability in the food‒energy‒water nexus. Front Environ Sci 2019;7:7. link1

[43] World Economic Forum. Net-zero challenges: the supply chain opportunity. Report. Geneva: World Economic Forum; 2021 Jan.

[44] Tapia JFD, Samsati S, Doliente SS, Martinez-Hernandez E, Wan Ab Karim WAB, Lim KL, et al. Design of biomass value chains that are synergistic with the food‒energy‒water nexus: strategies and opportunities. Food Bioprod Process 2019;116:171‒85. link1

[45] Bazzana D, Zaitchik B, Gilioli G. Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water‒energy‒food nexus. Struct Change Econ Dyn 2020;55:165‒76. link1

[46] Weitz N, Strambo C, Kemp-Benedict E, Nilsson M. Closing the governance gaps in the water‒energy‒food nexus: insights from integrative governance. Glob Environ Change 2017;45:165‒73. link1

[47] Pahl-Wostl C. Governance of the water‒energy‒food security nexus: a multilevel coordination challenge. Environ Sci Policy 2019;92:356‒67. link1

[48] Paim MA, Salas P, Lindner S, Pollitt H, Mercure JF, Edwards NR, et al. Mainstreaming the water‒energy‒food nexus through nationally determined contributions (NDCs): the case of Brazil. Clim Policy 2020;20(2):163‒78. link1

[49] Wolfe ML, Richard TL. 21st century engineering for on-farm food‒energy‒water systems. Curr Opin Chem Eng 2017;18:69‒76. link1

Related Research