Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 25, Issue 6 doi: 10.1016/j.eng.2022.09.007

AUH, a New Technology for Ocean Exploration

a Intelligent Ocean Technology Center, Zhejiang University, Zhoushan 316021, China
b College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
c Ocean College, Zhejiang University, Zhoushan 316021, China
d State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
e State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China
f Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

Available online: 2022-09-28

Next Previous

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Danovaro R, Aguzzi J, Fanelli E, Billett D, Gjerde K, Jamieson A, et al. An ecosystem-based deep-ocean strategy. Science 2017;355(6324):452‒4. link1

[ 2 ] Chatzievangelou D, Bahamon N, Martini S, del Rio J, Riccobene G, Tangherlini M, et al. Integrating diel vertical migrations of bioluminescent deep scattering layers into monitoring programs. Front Mar Sci 2021;8:661809. link1

[ 3 ] Chatzievangelou D, Aguzzi J, Scherwath M, Thomsen L. Quality control and preanalysis treatment of the environmental datasets collected by an internet operated deep-sea crawler during its entire seven-year long deployment (2009‒2016). Sensors 2020;20(10):2991.

[ 4 ] Rountree RA, Aguzzi J, Marini S, Fanelli E, De Leo FC, Del Rio J, et al. Towards an optimal design for ecosystem-level ocean observatories. In: Hawkins SJ, Allcock AL, Bates AE, Evans AJ, Firth LB, McQuaid CD, et al., editors. Oceanography and marine biology: an annual review. Boca Raton: CRC Press; 2020. p. 79‒106. link1

[ 5 ] Aguzzi J, Chatzievangelou D, Marini S, Fanelli E, Danovaro R, Flögel S, et al. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environ Sci Technol 2019;53(12):6616‒31. link1

[ 6 ] Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, et al. Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol 2014;352:451‒68. link1

[ 7 ] Juniper SK, Thornborough K, Douglas K, Hillier J. Remote monitoring of a deepsea marine protected area: the Endeavour Hydrothermal Vents. Aquat Conserv Mar Freshwater Ecosyst 2019;29(S2):84‒102. link1

[ 8 ] Bogue R. Underwater robots: a review of technologies and applications. Ind Rob 2015;42(3):186‒91. link1

[ 9 ] Doya C, Chatzievangelou D, Bahamon N, Purser A, De Leo FC, Juniper SK, et al. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV). PLoS ONE 2017;12(5):e0176917. link1

[10] Laschi C, Mazzolai B, Cianchetti M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci Rob 2016;1(1):eaah3690. link1

[11] Yoshida H, Aoki T, Osawa H, Ishibashi S, Watanabe Y, Tahara J, et al. A deepest depth ROV for sediment sampling and its sea trial result. In: Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies; 2007 Apr 17‒20; Tokyo, Japan. IEEE; 2007. p. 28‒33. link1

[12] Inoue T, Shiosawa T, Takagi K. Dynamic analysis of motion of crawler-type remotely operated vehicles. IEEE J Oceanic Eng 2013;38(2):375‒82. link1

[13] Aguzzi J, Costa C, Calisti M, Funari V, Stefanni S, Danovaro R, et al. Research trends and future perspectives in marine biomimicking robotics. Sensors 2021;21(11):3778. link1

[14] Marras S, Porfiri M. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J R Soc Interface 2012;9(73): 1856‒68. link1

[15] Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Rob 2014;1(1):75‒87. link1

[16] Katzschmann RK, Marchese AD, Rus D. Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh MA, Khatib O, Kumar V, editors. Experimental robotics: the 14th international symposium on experimental robotics. Cham: Springer; 2015. p. 405‒20. link1

[17] Marchese AD, Onal CD, Rus D. Towards a self-contained soft robotic fish: onboard pressure generation and embedded electro-permanent magnet valves. In: Desai JP, Dudek G, Khatib O, Kumar V, editors. Experimental robotics: the 13th international symposium on experimental robotics. Heidelberg: Springer; 2013. p. 41‒54. link1

[18] Phamduy P, Vazquez M, Rizzo A, Porfiri M. Miniature underwater robotic fish for animal‒robot interactions. In: Proceedings of the ASME 2016 Dynamic Systems and Control Conference; 2016 Oct 12‒14; Minneapolis, MN, USA. ASME; 2016. p. V002T17A009. link1

[19] Suzumori K, Endo S, Kanda T, Kato N, Suzuki H. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation; 2007 Apr 10‒14; Rome, Italy. IEEE; 2007. p. 4975‒80. link1

[20] Cloitre A, Arensen B, Patrikalakis NM, Youcef-Toumi K, Alvarado PVY. Propulsive performance of an underwater soft biomimetic batoid robot. In: Proceedings of the Twenty-Fourth International Ocean and Polar Engineering Conference; 2014 Jun 15‒20; Busan, Republic of Korea. Mountain View: ISOPE; 2014. 326‒33. link1

[21] Li T, Li G, Liang Y, Cheng T, Dai J, Yang X, et al. Fast-moving soft electronic fish. Sci Adv 2017;3(4):e1602045. link1

[22] Calisti M, Giorelli M, Levy G, Mazzolai B, Hochner B, Laschi C, et al. An octopusbioinspired solution to movement and manipulation for soft robots. Bioinspir Biomim 2011;6(3):036002. link1

[23] Purser A, Thomsen L, Barnes C, Best M, Chapman R, Hofbauer M, et al. Temporal and spatial benthic data collection via an internet operated deep sea crawler. Methods Oceanogr 2013;5:1‒18. link1

[24] Picardi G, Chellapurath M, Iacoponi S, Stefanni S, Laschi C, Calisti M. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci Rob 2020;5(42):eaaz1012. link1

[25] Aguzzi J, Flögel S, Marini S, Thomsen L, Albiez J, Weiss P, et al. Developing technological synergies between deep-sea and space research. Sci Anthropocene 2022;10(1):00064. link1

[26] Singh H, Bellingham JG, Hover F, Lemer S, Moran BA, von der Heydt K, et al. Docking for an autonomous ocean sampling network. IEEE J Oceanic Eng 2001;26(4):498‒514. link1

[27] Kawasaki T, Fukasawa T, Noguchi T, Baino M. Development of AUV “Marine Bird” with underwater docking and recharging system. In: Proceedings of 2003 International Conference Physics and Control; 2003 Jun 25‒27; Tokyo, Japan. IEEE; 2003. p. 166‒70. link1

[28] Shi JG, Li DJ, Yang CJ. Design and analysis of an underwater inductive coupling power transfer system for autonomous underwater vehicle docking applications. J Zhejiang Univ-Sci C 2014;15(1):51‒62. link1

[29] Zhang T, Li DJ, Yang CJ. Study on impact process of AUV underwater docking with a cone-shaped dock. Ocean Eng 2017;130:176‒87. link1

[30] Zheng R, Song T, Sun QG, Guo JQ. Review on underwater docking technology of AUV. Chin J Ship Res 2018;13(6):30‒7.

[31] Chen CW, Yan NM. Prediction of added mass for an autonomous underwater vehicle moving near sea bottom using panel method. In: Proceedings of the 4th International Conference on Information Science and Control Engineering (ICISCE); 2017 Jul 21‒23; Changsha, China. IEEE; 2017. p. 1094‒8. link1

[32] Chen CW, Yan NM, Leng JX, Chen Y. Numerical analysis of second-order wave forces acting on an autonomous underwater helicopter using panel method. In: Proceedings of OCEANS 2017-Anchorage; 2017 Sep 18‒21; Anchorage, AK, USA. IEEE; 2017. p. 1‒6. link1

[33] Chen CW, Jiang Y, Huang HC, Ji DX, Sun GQ, Yu Z, et al. Computational fluid dynamics study of the motion stability of an autonomous underwater helicopter. Ocean Eng 2017;143:227‒39. link1

[34] An X, Chen Y, Huang H. Parametric design and optimization of the profile of autonomous underwater helicopter based on NURBS. J Mar Sci Eng 2021;9(6):668. link1

[35] Chen CW, Huang CH, Dai XK, Huang HC, Chen Y. Motion and control simulation of a dished autonomous underwater helicopter. In: Proceedings of OCEANS 2017-Anchorage; 2017 Sep 18‒21; Anchorage, AK, USA. IEEE; 2017. p. 1‒6. link1

[36] Wang Z, Liu X, Huang H, Chen Y. Development of an autonomous underwater helicopter with high maneuverability. Appl Sci 2019;9(19):4072. link1

[37] Ji D, Chen CW, Chen Y. Autonomous underwater helicopters AUV with discshaped design for deepwater agility. Sea Tech 2018;59(8):25‒7.

[38] Liu X, Wang Z, Guo Y, Wu Y, Wu G, Xu J, et al. The design of control system based on autonomous underwater helicopter. In: Proceedings of OCEANS 2018 MTS/IEEE Charleston; 2018 Oct 22‒25; Charleston, SC, USA. IEEE; 2018. p. 1‒4. link1

[39] Chen CW, Wang T, Feng Z, Lu Y, Huang H, Ji D, et al. Simulation research on water-entry impact force of an autonomous underwater helicopter. J Mar Sci Tech 2020;25(4):1166‒81. link1

[40] Paull L, Saeedi S, Seto M, Li H. AUV navigation and localization: a review. IEEE J Oceanic Eng 2014;39(1):131‒49. link1

[41] Wang Y, Huang SH, Wang Z, Hu R, Feng M, Du P, et al. Design and experimental results of passive iUSBL for small AUV navigation. Ocean Eng 2022;248:110812. link1

[42] Wang Y, Hu R, Huang SH, Wang Z, Du P, Yang W, et al. Passive inverted ultra-short baseline positioning for a disc-shaped autonomous underwater vehicle: design and field experiments. IEEE Rob Autom Lett 2022;7 (3):6942‒9. link1

[43] Rypkema NR, Schmidt H. Passive inverted ultra-short baseline (piUSBL) localization: an experimental evaluation of accuracy. In: Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 3‒8; Macao, China. IEEE; 2019. p. 7197‒204. link1

Related Research