Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 24, Issue 5 doi: 10.1016/j.eng.2022.09.016

The Rational Design and Development of Microalgae-Based Biohybrid Materials for Biomedical Applications

a Interdisciplinary Nanoscience Center, Aarhus University, Aarhus DK-8000, Denmark
b College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Tuyun 558000, China
c State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

# These authors contributed equally to this work.

Received: 2021-10-29 Revised: 2022-05-20 Accepted: 2022-09-30 Available online: 2023-04-14

Next Previous

Abstract

Microalgae are a group of microscopic eukaryotic organisms that can transform carbon dioxide into diverse bioactive compounds through photosynthesis using chlorophyll a. Over the past decade, biohybrid materials comprising live microalgae and other biocompatible components have exhibited tremendous potential in solving many medical challenges, such as oncotherapy, tissue reconstruction, and drug delivery. Microalgae immobilized within conventional biomaterials can maintain their photosynthetic activity for an extended period of time, thereby providing local oxygen and working as biocompatible interfacing materials for regulating cell activities. The motility of microalgae has also inspired the development of biohybrid microrobots, in which drug molecules can be bound to the surface of microalgae via noncovalent adsorption and delivered to the target area through precisely controlled locomotion. Moreover, the autofluorescence, phototaxis, and biomass production of microalgae can be integrated into the design of novel biohybrid materials with versatile functions. Furthermore, through appropriate genetic manipulation, engineered microalgae can endow biohybrid materials with novel properties, such as specific cell-targeting capability and the local release of recombinant proteins from algae cells—technologies that show promise for promoting and diversifying the clinical use of microalgae-based biohybrid materials (MBBMs) in several fields of biomedicine. Herein, we summarize the fabrication, physiology, and locomotion ability of MBBMs; we then review typical and recent reports on the use of MBBMs in the biomedical field; finally, we provide critical discussions on the challenges and future perspectives of MBBMs.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Chisti Y. Microalgae as sustainable cell factories. Environ Eng Manag J 2006;5(3):261‒74. link1

[ 2 ] Asha V, Bhajantri NU, Nagabhushan P. GLCM-based chi-square histogram distance for automatic detection of defects on patterned textures. Int J Comput Vis Robot 2011;2(4):302‒13. link1

[ 3 ] Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 2008;99(17):8137‒42. link1

[ 4 ] Kathiresan K, Duraisamy A. Current issue of marine microbiology. ENVIS Newsl 2006;4:3‒5.

[ 5 ] García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017;10(5):1017‒24. link1

[ 6 ] Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere 2020;238:124680. link1

[ 7 ] Kiki C, Rashid A, Wang Y, Li Y, Zeng Q, Yu CP, et al. Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways. J Hazard Mater 2020;387:121985. link1

[ 8 ] Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG. Microalgae-based technology for antibiotics removal: from mechanisms to application of innovational hybrid systems. Environ Int 2021;155:106594. link1

[ 9 ] Saw CLL. Science against microbial pathogens: photodynamic therapy approaches. In: Mendez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex Research Center; 2011. p. 668‒74.

[10] Alsenani F, Tupally KR, Chua ET, Eltanahy E, Alsufyani H, Parekh HS, et al. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J 2020;28(12):1834‒41. link1

[11] de Jesus Raposo MF, De Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci 2013;93(15):479‒86. link1

[12] Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol 2010;2010:214186. link1

[13] de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 2010;101(6):1611‒27. link1

[14] Brayner R, Couté A, Livage J, Perrette C, Sicard C. Micro-algal biosensors. Anal Bioanal Chem 2011;401(2):581‒97. link1

[15] Abd El-Hack ME, Abdelnour S, Alagawany M, Abdo M, Sakr MA, Khafaga AF, et al. Microalgae in modern cancer therapy: current knowledge. Biomed Pharmacother 2019;111:42‒50. link1

[16] Prakash JW, Antonisamy JM, Jeeva S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac J Trop Biomed 2011;1(2 Suppl):S170‒3. link1

[17] Ragni R, Cicco SR, Vona D, Farinola GM. Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv Mater 2018;30(19):1704289. link1

[18] de Jesus Raposo MF, De Morais RMSC, de Morais AMMB. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 2013;11(1):233‒52. link1

[19] Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Mol Biol Rep 2021;48(5):4757‒65.

[20] Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, et al. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020;49(12):4043‒69. link1

[21] Xu D, Wang Y, Liang C, You Y, Sanchez S, Ma X. Self-propelled micro/nanomotors for on-demand biomedical cargo transportation. Small 2020;16(27):1902464. link1

[22] Halder A, Sun Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 2019;139:111334. link1

[23] Dahoumane SA, Mechouet M, Wijesekera K, Filipe CDM, Sicard C, Bazylinski DA, et al. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—a review. Green Chem 2017;19(3):552‒87. link1

[24] Ng WM, Che HX, Guo C, Liu C, Low SC, Chan DJC, et al. Artificial magnetotaxis of microbot: magnetophoresis versus self-swimming. Langmuir 2018;34(27):7971‒80. link1

[25] Qiao Y, Yang F, Xie T, Du Z, Zhong D, Qi Y, et al. Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer. Sci Adv 2020;6(21):eaba5996. link1

[26] Akolpoglu MB, Dogan NO, Bozuyuk U, Ceylan H, Kizilel S, Sitti M. High-yield production of biohybrid microalgae for on-demand cargo delivery. Adv Sci 2020;7(16):2001256. link1

[27] McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol 2002;83(1):37‒46. link1

[28] Tanaka K, Koga T, Konishi F, Nakamura M, Mitsuyama M, Himeno K, et al. Augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection. Infect Immun 1986;53(2):267‒71. link1

[29] Bedirli A, Kerem M, Ofluoglu E, Salman B, Katircioglu H, Bedirli N, et al. Administration of Chlorella sp. microalgae reduces endotoxemia, intestinal oxidative stress and bacterial translocation in experimental biliary obstruction. Clin Nutr 2009;28(6):674‒8. link1

[30] Zhang Z, Xu R, Wang Z, Dong M, Cui B, Chen M. Visible-light neural stimulation on graphitic-carbon nitride/graphene photocatalytic fibers. ACS Appl Mater Interfaces 2017;9(40):34736‒43. link1

[31] Chen Y, Taskin MB, Zhang Z, Su Y, Han X, Chen M. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension. Biomater Sci 2019;7(5):2165‒73. link1

[32] Xu R, Zhang Z, Toftdal MS, Møller AC, Dagnaes-Hansen F, Dong M, et al. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release 2019;301:129‒39. link1

[33] Zhang Y, Zhang Z, Wang Y, Su Y, Chen M. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Mater Sci Eng C 2020;116:111070. link1

[34] Majidi SS, Slemming-Adamsen P, Hanif M, Zhang Z, Wang Z, Chen M. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int J Biol Macromol 2018;118(Pt B):1648‒54. link1

[35] Mărgăoan R, Topal E, Balkanska R, Yücel B, Oravecz T, Cornea-Cipcigan M, et al. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 2021;10(7):1023. link1

[36] Shanab SMM, Mostafa SSM, Shalaby EA, Mahmoud GI. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac J Trop Biomed 2012;2(8):608‒15. link1

[37] de Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JAV, et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol 2010;101(8):2872‒6. link1

[38] Cha BG, Kwak HW, Park AR, Kim SH, Park SY, Kim HJ, et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae Spirulina extract. Biopolymers 2014;101(4):307‒18. link1

[39] Steffens D, Lersch M, Rosa A, Scher C, Crestani T, Morais MG, et al. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. J Biomed Nanotechnol 2013;9(4):710‒8. link1

[40] Kim SH, Shin C, Min SK, Jung SM, Shin HS. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf B 2012;90:113‒8. link1

[41] Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Res 2021;58:102395. link1

[42] Tang YZ, Dobbs FC. Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Appl Environ Microbiol 2007;73(7):2306‒13. link1

[43] Carpenter EJ, Chang J, Shapiro LP. Green and blue fluorescing dinoflagellates in Bahamian waters. Mar Biol 1991;108(1):145‒9. link1

[44] Elbrächter M. Green autofluorescence—a new taxonomic feature for living dinoflagellate cysts and vegetative cells. Rev Palaeobot Palynol 1994;84(1‒2):101‒5.

[45] Liu Y, Rafailovich MH, Malal R, Cohn D, Chidambaram D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc Natl Acad Sci USA 2009;106(34):14201‒6. link1

[46] Rooke JC, Léonard A, Meunier CF, Sarmento H, Descy JP, Su BL. Hybrid photosynthetic materials derived from microalgae Cyanidium caldarium encapsulated within silica gel. J Colloid Interface Sci 2010;344(2):348‒52. link1

[47] Desmet J, Meunier CF, Danloy EP, Duprez ME, Hantson AL, Thomas D, et al. Green and sustainable production of high value compounds via a microalgae encapsulation technology that relies on CO2 as a principle reactant. J Mater Chem A 2014;2(48):20560‒9. link1

[48] Chen H, Cheng Y, Tian J, Yang P, Zhang X, Chen Y, et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv 2020;6(20):eaba4311. link1

[49] Nguyen-Ngoc H, Tran-Minh C. Sol‒gel process for vegetal cell encapsulation. Mater Sci Eng C 2007;27(4):607‒11. link1

[50] Rooke JC, Léonard A, Su BL. Targeting photobioreactors: immobilisation of cyanobacteria within porous silica gel using biocompatible methods. J Mater Chem 2008;18(12):1333‒41. link1

[51] Léonard A, Rooke JC, Meunier CF, Sarmento H, Descy JP, Su BL. Cyanobacteria immobilised in porous silica gels: exploring biocompatible synthesis routes for the development of photobioreactors. Energy Environ Sci 2010;3(3):370‒7. link1

[52] Darder M, Aranda P, Burgos-Asperilla L, Llobera A, Cadarso VJ, Fernández-Sánchez C, et al. Algae‒silica systems as functional hybrid materials. J Mater Chem 2010;20(42):9362‒9. link1

[53] Voznesenskiy SS, Popik AY, Gamayunov EL, Orlova TY, Markina ZV, Postnova IV, et al. One-stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. Eur Biophys J 2018;47(1):75‒85. Erratum in: Eur Biophys J 2018;47(1):87. link1

[54] Dickson DJ, Page CJ, Ely RL. Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol‒gel. Int J Hydrogen Energy 2009;34(1):204‒15. link1

[55] Nguyen-Ngoc H, Tran-Minh C. Fluorescent biosensor using whole cells in an inorganic translucent matrix. Anal Chim Acta 2007;583(1):161‒5. link1

[56] Schenck TL, Hopfner U, Chávez MN, Machens HG, Somlai-Schweiger I, Giunta RE, et al. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering. Acta Biomater 2015;15:39‒47. link1

[57] Chávez MN, Schenck TL, Hopfner U, Centeno-Cerdas C, Somlai-Schweiger I, Schwarz C, et al. Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials 2016;75:25‒36. link1

[58] Homburg SV, Kruse O, Patel AV. Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels. J Biotechnol 2019;302:58‒66. link1

[59] Xiong W, Yang Z, Zhai H, Wang G, Xu X, Ma W, et al. Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells. Chem Commun 2013;49(68):7525‒7. link1

[60] Hopfner U, Schenck TL, Chávez MN, Machens HG, Bohne AV, Nickelsen J, et al. Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomater 2014;10(6):2712‒7. link1

[61] San Keskin NO, Celebioglu A, Uyar T, Tekinay T. Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 2015;54(21):5802‒9. link1

[62] Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 2014;10(2):630‒40. link1

[63] Großerhode C, Wehlage D, Grothe T, Grimmelsmann N, Fuchs S, Hartmann J, et al. Investigation of microalgae growth on electrospun nanofiber mats. AIMS Bioeng 2017;4(3):376‒85. link1

[64] Eroglu E, Agarwal V, Bradshaw M, Chen X, Smith SM, Raston CL, et al. Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 2012;14(10):2682‒5. link1

[65] Obaíd ML, Camacho JP, Brennet M, Corrales-Orovio R, Carvajal F, Martorell X, et al. A first in human trial implanting microalgae shows safety of photosynthetic therapy for the effective treatment of full thickness skin wounds. Front Med 2021;8:2088. link1

[66] Zhang Z, Jørgensen ML, Wang Z, Amagat J, Wang Y, Li Q, et al. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials 2020;253:120108. link1

[67] Wang Y, Zhang Y, Zhang Z, Su Y, Wang Z, Dong M, et al. An injectable high-conductive bimaterial scaffold for neural stimulation. Colloids Surf B 2020;195:111210. link1

[68] Su Y, Zhang Z, Wan Y, Zhang Y, Wang Z, Klausen LH, et al. A hierarchically ordered compacted coil scaffold for tissue regeneration. NPG Asia Mater 2020;12(1):55. link1

[69] Pannier A, Soltmann U, Soltmann B, Altenburger R, Schmitt-Jansen M. Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B 2014;2(45):7896‒909. link1

[70] Lode A, Krujatz F, Brüggemeier S, Quade M, Schütz K, Knaack S, et al. Green bioprinting: fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Eng Life Sci 2015;15(2):177‒83. link1

[71] Trampe E, Koren K, Akkineni AR, Senwitz C, Krujatz F, Lode A, et al. Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs. Adv Funct Mater 2018;28(45):1804411. link1

[72] Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Functional multi-layer graphene‒algae hybrid material formed using vortex fluidics. Green Chem 2013;15(3):650‒5. link1

[73] Eroglu E, D’Alonzo NJ, Smith SM, Raston CL. Vortex fluidic entrapment of functional microalgal cells in a magnetic polymer matrix. Nanoscale 2013;5(7):2627‒31. link1

[74] Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Adv 2013;3(22):8180‒3. link1

[75] Yan X, Zhou Q, Yu J, Xu T, Deng Y, Tang T, et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv Funct Mater 2015;25(33):5333‒42. link1

[76] Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2017;2(12):eaaq1155. link1

[77] Santomauro G, Singh AV, Park BW, Mohammadrahimi M, Erkoc P, Goering E, et al. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Adv Biosyst 2018;2(12):1800039. link1

[78] Xie S, Jiao N, Tung S, Liu L. Controlled regular locomotion of algae cell microrobots. Biomed Microdevices 2016;18(3):47. link1

[79] Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, et al. Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA 2005;102(34):11963‒7. link1

[80] Yasa O, Erkoc P, Alapan Y, Sitti M. Microalga-powered microswimmers toward active cargo delivery. Adv Mater 2018;30(45):1804130. link1

[81] Kerschgens IP, Gademann K. Antibiotic algae by chemical surface engineering. Chembiochem 2018;19(5):439‒43. link1

[82] Harris EH. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989.

[83] Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, et al. The transport behavior of a biflagellated microswimmer before and after cargo loading. Langmuir 2021;37(30):9192‒201. link1

[84] Chia WY, Kok H, Chew KW, Low SS, Show PL. Can algae contribute to the war with Covid-19? 2021;12(1):1226‒37. link1

[85] Kumar V, Sharma N, Jaiswal KK, Vlaskin MS, Nanda M, Tripathi MK, et al. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: recent advances and current challenges. Process Biochem 2021;104:83‒91. link1

[86] Delalat B, Sheppard VC, Rasi Ghaemi S, Rao S, Prestidge CA, McPhee G, et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun 2015;6(1):8791. link1

[87] Centeno-Cerdas C, Jarquín-Cordero M, Chávez MN, Hopfner U, Holmes C, Schmauss D, et al. Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds. Acta Biomater 2018;81:184‒94. link1

[88] Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 2019;18:178. link1

[89] Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI, et al. Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels 2017;10:267. link1

[90] Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV, et al. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 2013;48(7):1533‒40. link1

[91] Jacob RH, Shanab SM, Shalaby EA. Algal biomass nanoparticles: chemical characteristics, biological actions, and applications. Biomass Convers Biorefin. . . 10.1007/s13399-021-01930-y

Related Research