Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 24, Issue 5 doi: 10.1016/j.eng.2023.02.011

Selective and Independent Control of Microrobots in a Magnetic Field: A Review

a Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
b School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518057, China
c Shenzhen Research Institutes of City University of Hong Kong, Shenzhen 518057, China

Received: 2021-08-16 Revised: 2022-09-18 Accepted: 2023-02-09 Available online: 2023-04-14

Next Previous

Abstract

Due to the unique advantages of untethered connections and a high level of safety, magnetic actuation is a commonly used technique in microrobotics for propelling microswimmers, manipulating fluidics, and navigating medical devices. However, the microrobots or actuated targets are exposed to identical and homogeneous driving magnetic fields, which makes it challenging to selectively control a single robot or a specific group among multiple targets. This paper reviews recent advances in selective and independent control for multi-microrobot or multi-joint microrobot systems driven by magnetic fields. These selective and independent control approaches decode the global magnetic field into specific configurations for the individualized actuation of multiple microrobots. The methods include applying distinct properties for each microrobot or creating heterogeneous magnetic fields at different locations. Independent control of the selected targets enables the effective cooperation of multiple microrobots to accomplish more complicated operations. In this review, we provide a unique perspective to explain how to manipulate individual microrobots to achieve a high level of group intelligence on a small scale, which could help accelerate the translational development of microrobotic technology for real-life applications.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Son D, Gilbert H, Sitti M. Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft Robot 2020;7(1):10‒21. link1

[ 2 ] Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 2009;6(1):53‒70. link1

[ 3 ] Wang X, Ho C, Tsatskis Y, Law J, Zhang Z, Zhu M, et al. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci Robot 2019;4(28):eaav6180. link1

[ 4 ] Kantaros Y, Johnson BV, Chowdhury S, Cappelleri DJ, Zavlanos MM. Control of magnetic microrobot teams for temporal micromanipulation tasks. IEEE Trans Robot 2018;34(6):1472‒89. link1

[ 5 ] Rao KJ, Li F, Meng L, Zheng H, Cai F, Wang W. A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small 2015;11(24):2836‒46. link1

[ 6 ] Palima D, Glückstad J. Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 2013;7(4):478‒94. link1

[ 7 ] Erdem EY, Chen YM, Mohebbi M, Suh JW, Kovacs GTA, Darling RB, et al. Thermally actuated omnidirectional walking microrobot. J Microelectromech Syst 2010;19(3):433‒42. link1

[ 8 ] Karpelson M, Wei GY, Wood RJ. Driving high voltage piezoelectric actuators in microrobotic applications. Sens Actuators A Phys 2012;176:78‒89. link1

[ 9 ] Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot 2019;4(33):eaax7329. link1

[10] Cui J, Huang TY, Luo Z, Testa P, Gu H, Chen XZ, et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019;575(7781):164‒8. link1

[11] Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci Robot 2019;4(28):eaav8006. link1

[12] Mahoney AW, Abbott JJ. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int J Robot Res 2015;35(1‒3):129‒47.

[13] Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 2010;26(6):1006‒17. link1

[14] Yu J, Wang B, Du X, Wang Q, Zhang L. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun 2018;9(1):3260. link1

[15] Yu J, Jin D, Chan KF, Wang Q, Yuan K, Zhang L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun 2019;10(1):5631. link1

[16] Abbott JJ, Diller E, Petruska AJ. Magnetic methods in robotics. Annu Rev Control Robot Auton Syst 2020;3(1):57‒90. link1

[17] Yang L, Zhang L. Motion control in magnetic microrobotics: from individual and multiple robots to swarms. Annu Rev Control Robot Auton Syst 2020;4(1):509‒34. link1

[18] Cao Q, Han X, Li L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip 2014;14(15):2762‒77. link1

[19] Hwang J, Kim J, Choi H. A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. Intell Serv Robot 2020;13(1):1‒14. link1

[20] Alapan Y, Yasa O, Yigit B, Yasa IC, Erkoc P, Sitti M. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu Rev Control Robot Auton Syst 2019;2(1):205‒30. link1

[21] Ongaro F, Pane S, Scheggi S, Misra S. Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Trans Robot 2019;35(1):174‒83. link1

[22] Du X, Zhang M, Yu J, Yang L, Chiu WYP, Zhang L. Design and real-time optimization for a magnetic actuation system with enhanced flexibility. IEEE/ASME Trans Mechatron 2020;26(3):1524‒35. link1

[23] Cao Q, Fan Q, Chen Q, Liu C, Han X, Li L. Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Mater Horiz 2020;7(3):638‒66. link1

[24] Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, et al. Reconfigurable magnetic microrobot swarm Multimode transformation, locomotion, and manipulation. Sci Robot 2019;4(28):eaav8006. link1

[25] Yu J, Yang L, Zhang L. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int J Robot Res 2018;37(8):912‒30. link1

[26] Salehizadeh M, Diller E. Three-dimensional independent control of multiple magnetic microrobots via inter-agent forces. Int J Robot Res 2020;39(12):1377‒96. link1

[27] Zhang J, Salehizadeh M, Diller E. Parallel pick and place using two independent untethered mobile magnetic microgrippers. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018 May 21‒25; Brisbane, QLD, Australia. IEEE; 2019. p. 123‒8. link1

[28] Floyd S, Diller E, Pawashe C, Sitti M. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int J Robot Res 2011;30(13):1553‒65. link1

[29] Mandal P, Chopra V, Ghosh A. Independent positioning of magnetic nanomotors. ACS Nano 2015;9(5):4717‒25. link1

[30] Tottori S, Zhang L, Peyer KE, Nelson BJ. Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Lett 2013;13(9):4263‒8. link1

[31] Diller E, Floyd S, Pawashe C, Sitti M. Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation; 2011 May 9‒13; Shanghai, China. IEEE; 2011. p. 115‒20. link1

[32] Diller E, Floyd S, Pawashe C, Sitti M. Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 2012;28(1):172‒82. link1

[33] Diller E, Miyashita S, Sitti M. Magnetic hysteresis for multi-state addressable magnetic microrobotic control. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 7‒12; Vilamoura-Algarve, Portugal. IEEE. 2012. p. 2325‒31. link1

[34] Diller E, Miyashita S, Sitti M. Remotely addressable magnetic composite micropumps. RSC Advances 2012;2(9):3850‒6. link1

[35] Choi K, Jang G, Jeon S, Nam J. Capsule-type magnetic microrobot actuated by an external magnetic field for selective drug delivery in human blood vessels. IEEE Trans Magn 2014;50(11):1‒4. link1

[36] Lee W, Nam J, Jang B, Jang G. Selective motion control of a crawling magnetic robot system for wireless self-expandable stent delivery in narrowed tubular environments. IEEE Trans Ind Electron 2017;64(2):1636‒44. link1

[37] Vartholomeos P, Akhavan-Sharif MR, Dupont PE. Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14‒18; Saint Paul, MN, USA. IEEE; 2012. p. 1927‒32. link1

[38] Denise W, Wang J, Edward S, Vijay K. Control of multiple magnetic micro robots. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2015 Aug 2‒5; Boston, Massachusetts, USA. ASME; 2015 p. V004T09A041.

[39] Wong D, Steager EB, Kumar V. Independent control of identical magnetic robots in a plane. IEEE Robot Autom Lett 2016;1(1):554‒61. link1

[40] Mellal L, Folio D, Belharet K, Ferreira A. Optimal control of multiple magnetic microbeads navigating in microfluidic channels. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16‒21; Stockholm, Sweden. IEEE; 2016. p. 1921‒6. link1

[41] Diller E, Giltinan J, Sitti M. Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res 2013;32(5):614‒31. link1

[42] Kawaguchi T, Inoue Y, Ikeuchi M, Ikuta K. Independent actuation and master‒slave control of multiple micro magnetic actuators. In: Proceedings of 2018 IEEEMicro Electro Mechanical Systems MEMS); 2018 Jan 21‒25; Belfast, UK. IEEE; 2018. p. 190‒3. link1

[43] Shahrokhi S, Mahadev A, Becker AT. Algorithms for shaping a particle swarm with a shared input by exploiting non-slip wall contacts. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24‒28; Vancouver, BC, Canada. IEEE; 2017. p. 4304‒11. link1

[44] Becker A, Felfoul O, Dupont PE. Simultaneously powering and controlling many actuators with a clinical MRI scanner. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14‒18; Chicago, IL, USA. IEEE; 2014. p. 2017‒23. link1

[45] Denasi A, Misra S. Independent and leader‒follower control for two magnetic micro-agents. IEEE Robot Autom Lett 2017;3(1):218‒25. link1

[46] Shahrokhi S, Shi J, Isichei B, Becker AT. Exploiting nonslip wall contacts to position two particles using the same control input. IEEE Trans Robot 2019;35(3):577‒88. link1

[47] EqtamiA, FelfoulO, DupontPE. MRI-powered closed-loop control for multiple magnetic capsules. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14‒18; Chicago, IL, USA. IEEE; 2014. p. 3536‒42. link1

[48] Becker A, Ou Y, Kim P, Kim MJ, Julius A. Feedback control of many magnetized: tetrahymena pyriformis cells by exploiting phase inhomogeneity. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3‒7; Tokyo, Japan. IEEE; 2013. p. 3317‒23. link1

[49] Zhang J, Jain P, Diller E. Independent control of two millimeter-scale soft-bodied magnetic robotic swimmers. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16‒21; Stockholm, Sweden. IEEE; 2016. p. 1933‒8. link1

[50] Rahmer J, Stehning C, Gleich B. Spatially selective remote magnetic actuation of identical helical micromachines. Sci Robot 2017;2(3):eaal2845. link1

[51] Petruska AJ, Nelson BJ. Minimum bounds on the number of electromagnets required for remote magnetic manipulation. IEEE Trans Robot 2015;31(3):714‒22. link1

[52] Salmanipour S, Diller E. Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018 May 21‒25; Brisbane, QLD, Australia. IEEE; 2018. p. 3608‒13. link1

[53] Salmanipour S, Youssefi O, Diller ED. Design of multi-degrees-of-freedom microrobots driven by homogeneous quasi-static magnetic fields. IEEE Trans Robot 2020;37(1):246‒56. link1

[54] Inoue T, Iwatani K, Shimoyama I, Miura H. Micromanipulation using magnetic field. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation; 1995 May 21‒27; Nagoya, Japan. IEEE; 1995. p. 679‒84. link1

[55] Lee CS, Lee H, Westervelt RM. Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 2001;79(20):3308‒10. link1

[56] Pelrine R, Wong-Foy A, McCoy B, Holeman D, Mahoney R, Myers G, et al. Diamagnetically levitated robots; an approach to massively parallel robotic systems with unusual motion properties. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14‒18; Saint Paul, MN, USA. IEEE; 2012. p. 739‒44. link1

[57] Cappelleri D, Efthymiou D, Goswami A, Vitoroulis N, Zavlanos M. Towards mobile microrobot swarms for additive micromanufacturing. Int J Adv Robot Syst 2014;11(9). link1

[58] Chowdhury S, Jing W, Cappelleri DJ. Towards independent control of multiple magnetic mobile microrobots. Micromachines 2015;7(1):3. link1

[59] Chowdhury S, Jing W, Cappelleri DJ. Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. J Microbio Robot 2017;12(1‒4):21‒31.

[60] Steager E, Wong D, Wang J, Arora S, Kumar V. Control of multiple microrobots with multiscale magnetic field superposition. In: Proceedings of 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2017 Jul 17‒21; Montreal, QC, Canada. IEEE; 2017. p. 1‒6. link1

[61] Chakravarthula PN, Shekhar S, Ananthasuresh GK. Attachment, detachment, and navigation of small robots using local magnetic fields. In: Proceedings of 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2019 Jul 1‒5; Helsinki, Finland. IEEE; 2019. p. 1‒6. link1

[62] Yu W, Lin H, Wang Y, He X, Chen N, Sun K, et al. A ferrobotic system for automated microfluidic logistics. Sci Robot 2020;5(39):eaba4411. link1

[63] Pawashe C, Floyd S, Sitti M. Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 2009;94(16):164108. link1

[64] Diller E, Pawashe C, Floyd S, Sitti M. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2D reconfigurable micro-systems. Int J Robot Res 2011;30(14):1667‒80. link1

[65] Li X, Lu C, Song Z, Ding W, Zhang XP. Planar magnetic actuation for soft and rigid robots using a scalable electromagnet array. IEEE Robot Autom Lett 2022;7(4):9264‒70. link1

[66] Chowdhury S, Jing WM, Jaron P, Cappelleri DJ. Path planning and control for autonomous navigation of single and multiple magnetic mobile microrobots. In: Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2015 Aug 2‒5; Boston, Massachusetts, USA. ASME; 2015 p. V004T09A040. link1

[67] Sagar Chowdhury WJ, CappelleriDavid J.. Independent actuation of multiple microrobots using localized magnetic fields. In: Proceedings of 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2016 Jul 18‒22; Paris, France. IEEE; 2016. p. 1‒6. link1

[68] Lapuník V, Juřík M, Vítek M, Kuthan J, Mach F. Magnetically assembled electronic digital materials. In: Proceedings of 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2022 Jul 25‒29; Toronto, ON, Canada. IEEE; 2022. p. 1‒6. link1

[69] Johnson BV, Chowdhury S, Cappelleri DJ. Local magnetic field design and characterization for independent closed-loop control of multiple mobile microrobots. IEEE/ASME Trans Mechatron 2020;25(2):526‒34. link1

[70] Fan X, Dong X, Karacakol AC, Xie H, Sitti M. Reconfigurable multifunctional ferrofluid droplet robots. Proc Natl Acad Sci USA 2020;117(45):27916‒26. link1

[71] Zhang J, Wang X, Wang Z, Pan S, Yi B, Ai L, et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat Commun 2021;12(1):7136. link1

[72] Torres NA, Popa DO. Cooperative control of multiple untethered magnetic microrobots using a single magnetic field source. In: Proceedings of 2015 IEEE International Conference on Automation Science and Engineering (CASE); 2015 Aug 24‒28; Gothenburg, Sweden. IEEE; 2015. p. 1608‒13. link1

[73] Torres NA, Ruggeri S, Popa DO. Untethered microrobots actuated with focused permanent magnet field. In: Proceedings of ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2014 Aug 17‒20; Buffalo, New York, USA. ASME; 2014. p. V004T09A024. link1

[74] Nelson ND, Abbott JJ. Generating two independent rotating magnetic fields with a single magnetic dipole for the propulsion of untethered magnetic devices. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26‒30; Seattle, WA, USA. IEEE; 2015. p. 4056‒61. link1

[75] Di Natali C, Buzzi J, Garbin N, Beccani M, Valdastri P. Closed-loop control of local magnetic actuation for robotic surgical instruments. IEEE Trans Robot 2015;31(1):143‒56. link1

[76] Simi M, Pickens R, Menciassi A, Herrell SD, Valdastri P. Fine tilt tuning of a laparoscopic camera by local magnetic actuation: two-port nephrectomy experience on human cadavers. Surg Innov 2013;20(4):385‒94d. link1

[77] Natali CD, Ranzani T, Simi M, Menciassi A, Valdastri P. Trans-abdominal active magnetic linkage for robotic surgery: concept definition and model assessment. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14‒18; Saint Paul, MN, USA. IEEE; 2012. p. 695‒700. link1

[78] Isitman O, Kandemir H, Alcan G, Cenev Z, Zhou Q. Simultaneous and independent micromanipulation of two identical particles with robotic electromagnetic needles. In: Proceedings of International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2022 Jul 25‒29; Toronto, ON, Canada. IEEE; 2022. p. 1‒6. link1

[79] McDonald K, Rendos A, Woodman S, Brown KA, Ranzani T. Magnetorheological fluid‐based flow control for soft robots. Adv Intell Syst 2020;2(11):2000139. link1

[80] Leps T, Glick PE, Ruffatto Iii D, Parness A, Tolley MT, Hartzell C. A low-power, jamming, magnetorheological valve using electropermanent magnets suitable for distributed control in soft robots. Smart Mater Struct 2020;29(10): 105025. link1

[81] Amoudruz L, Koumoutsakos P. Independent control and path planning of microswimmers with a uniform magnetic field. Adv Intell Syst 2021;4(3):2100183. link1

[82] Ishiyama K, Sendoh M, Arai KI. Magnetic micromachines for medical applications. J Magn Magn Mater 2002;242:41‒6. link1

[83] Sendoh M, Ishiyama K, Arai KI. Direction and individual control of magnetic micromachine. IEEE Trans Magn 2002;38(5):3356‒8. link1

[84] Vach PJ, Klumpp S, Faivre D. Steering magnetic micropropellers along independent trajectories. J Phys D Appl Phys 2016;49(6):065003. link1

[85] Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ. Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 2014;104(14):144101. link1

[86] Howell TA, Osting B, Abbott JJ. Sorting rotating micromachines by variations in their magnetic properties. Phys Rev Appl 2018;9(5):054021. link1

[87] Cheang UK, Lee K, Julius AA, Kim MJ. Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 2014;105(8):083705. link1

[88] Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ. Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 2009;29(5):613‒36. link1

[89] Kratochvil BE, Frutiger D, Vollmers K, Nelson BJ. Visual servoing and characterization of resonant magnetic actuators for decoupled locomotion of multiple untethered mobile microrobots. In: Proceedings of2009 IEEE International Conference on Robotics and Automation; 2009 May 12‒17; Kobe, Japan. IEEE; 2009. p. 2859‒64. link1

[90] Khalil ISM, Tabak AF, Hamed Y, Tawakol M, Klingner A, Gohary NE, et al. Independent actuation of two-tailed microrobots. IEEE Robot Autom Lett 2018;3(3):1703‒10. link1

[91] Tottori S, Sugita N, Kometani R, Ishihara S, Mitsuishi M. Selective control method for multiple magnetic helical microrobots. J Micro Nano Mech 2011;6(3‒4):89‒95.

[92] Narayanamoorthi R, Juliet AV, Chokkalingam B. Frequency splitting-based wireless power transfer and simultaneous propulsion generation to multiple micro-robots. IEEE Sens J 2018;18(13):5566‒75. link1

[93] Boyvat M, Koh JS, Wood RJ. Addressable wireless actuation for multijoint folding robots and devices. Sci Robot 2017;2(8):eaan1544. link1

[94] Novelino LS, Ze Q, Wu S, Paulino GH, Zhao R. Untethered control of functional origami microrobots with distributed actuation. Proc Natl Acad Sci USA 2020;117(39):24096‒101. link1

[95] Mao G, Drack M, Karami-Mosammam M, Wirthl D, Stockinger T, Schwödiauer R, et al. Soft electromagnetic actuators. Sci Adv 2020;6(26):eabc0251. link1

[96] Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5(3):142‒56. link1

[97] Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122(3):3259‒91. link1

[98] Wang M, Song S, Liu J, Meng MQH. Multipoint simultaneous tracking of wireless capsule endoscope using magnetic sensor array. IEEE Trans Instrum Meas 2021;70:1‒10. link1

[99] Khalesi R, Yousefi M, Nejat Pishkenari H, Vossoughi G. Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller. Mechatronics 2022;84:102776. link1

[100] Pawashe C, Floyd S, Sitti M. Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 2009;28(8):1077‒94. link1

[101] Floyd S, Pawashe C, Sitti M. Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Trans Robot 2009;25(6):1332‒42. link1

[102] Yang LD, Du XZ, Yu E, Jin DD, Zhang L. DeltaMag: an electromagnetic manipulation system with parallel mobile coils. In: Proceedings of 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20‒24; Montreal, QC, Canada. IEEE; 2019. p. 9814‒20. link1

[103] Li C, Lau GC, Yuan H, Aggarwal A, Dominguez VL, Liu S, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci Robot 2020;5(49):eabb9822. link1

[104] Xu L, Gong D, Chen K, Cai J, Zhang W. Acoustic levitation applied for reducing undesired lateral drift of magnetic helical microrobots. J Appl Phys 2020;128(18):184703. link1

[105] Wang H, Rubenstein M. Autonomous mobile robot with independent control and externally driven actuation. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9‒14; Daejeon, Republic of Korea. IEEE; 2016. p. 3647‒52. link1

Related Research