Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 1 doi: 10.15302/J-ENG-2015006

DARPA Robotics Grand Challenge Participation and Ski-Type Gait for Rough-Terrain Walking

Department of Electrical and Computer Engineering, Ohio State University, Columbus, OH 43210, USA

Received: 2015-02-11 Revised: 2015-03-18 Accepted: 2015-03-25 Available online: 2015-03-31

Next Previous

Abstract

In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency (DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closed-chain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the Ski-Type gait. We also present our team performance in the trials of the Robotics Challenge.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[ 1 ] DARPA. http://www.darpa.mil/about.aspx

[ 2 ] J. Markoff. Google cars drive themselves, in traffic. New York Times, 2010, 9

[ 3 ] Self-driving car test: Steve mahan. http://www.google.com/about/careers/lifeatgoogle/self-driving-car-test-steve-mahan.html

[ 4 ] Z. Sun, G. Bebis, R. Miller. On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28(5): 694–711 link1

[ 5 ] A. Geiger, P. Lenz, R. Urtasun. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conf. Computer Vision and Pattern Recognition (CVPR). Providence: IEEE, 2012: 3354–3361

[ 6 ] A. Broggi, P. Cerri, S. Ghidoni, P Grisleri, H. G. Jung. A new approach to urban pedestrian detection for automatic braking. IEEE Trans. Intell. Transp. Syst., 2009, 10(4): 594–605 link1

[ 7 ] C. Urmson, et al. Autonomous driving in urban environments: Boss and the Urban Challenge. J. Field Robot., 2008, 25(8): 425–466 link1

[ 8 ] G. Pratt, J. Manzo. The DARPA robotics challenge. IEEE Robot. Autom. Mag., 2013, 20(2): 10–12

[ 9 ] Asimo. http://asimo.honda.com

[10] S. M. Song, K. J. Waldron. Machines that Walk: The Adaptive Suspension Vehicle. Cambridge: MIT Press, 1989

[11] K. J. Waldron, V. J. Vohnout, A. Pery, R. B. McGhee. Configuration design of the adaptive suspension vehicle. Int. J. Robot. Res., 1984, 3(2): 37–48

[12] R. B. McGhee, G. I. Iswandhi. Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans. Syst. Man Cybern., 1979, 9(4): 176–182 link1

[13] BigDog. http://www.bostondynamics.com/robot_bigdog.html

[14] Y. F. Zheng, F. R. Jr Sias. Design and motion control of practical biped robots. Int. J. Robot. Autom., 1988, 3(2): 70–78

[15] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. The intelligent ASIMO: System overview and integration. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), vol. 3, 2002: 2478–2483

[16] T. Ishida. Development of a small biped entertainment robot QRIO. In: IEEE Int. Symp. Micro-Nanomechatronics and Human Science. IEEE, 2004: 23–28

[17] Petman. http://www.bostondynamics.com/robot_petman.html

[18] Atlas. http://www.bostondynamics.com/robot_Atlas.html

[19] SCHAFT. http://theroboticschallenge.org/teams/schaft

[20] CHIMP. http://www.theroboticschallenge.org/teams/tartan-rescue

[21] RoboSimian. http://www.theroboticschallenge.org/teams/robosimian

[22] Y. F. Zheng, et al. Humanoid robots walking on grass, sands and rocks. In: IEEE Int. Conf. Technologies for Practical Robot Applications (TePRA). Woburn: IEEE, 2013: 1–6

[23] H. Kawamoto, S. Lee, S. Kanbe, Y. Sankai. Power assist method for HAL-3 using EMG-based feedback controller. In: IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 2, 2003: 1648–1653

[24] L. Lunenburger, G. Colombo. R. Riener, V. Dietz. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. In: Int. Conf. on Rehabilitation Robotics (ICORR), 2005: 345–348

[25] S. Dubowsky, et al. Pamm—A robotic aid to the elderly for mobility assistance and monitoring: A “helping-hand” for the elderly. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 1, 2000: 570–576

[26] A. Morris, et al. A robotic walker that provides guidance. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 1, 2003: 25–30

[27] R. B. McGhee, A. A. Frank. On the stability properties of quadruped creeping gaits. Math. Biosci., 1968, 3: 331–351 link1

[28] H. Wang, S. Li, Y. Zheng, T. Kim, P. Oh. Ski-type self-balance humanoid walking for rough terrain. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 2, 2014: 1620–1626

[29] Hubo humanoid robot. http://www.ros.org/wiki/Robots/HUBO

[30] J. Kerr, B. Roth. Special grasping configurations with dexterous hands. In: IEEE Int. Conf. Robotics and Automation (ICRA), vol. 3, 1986: 1361–1367

[31] D. E. Orin, S. Y. Oh. Control of force distribution in robotic mechanisms containing closed kinematic chains. J. Dyn. Syst. Meas. Control, 1981, 103(2): 134–141 link1

[32] Openhubo. https://github.com/daslrobotics/openHubo

[33] H. Wang, Y. F. Zheng, Y. Jun, P. Oh. DRC-Hubo walking on rough terrains. In: IEEE Int. Conf. Technologies for Practical Robot Applications (TePRA). Woburn: IEEE, 2014: 1–6

Related Research